Set {a,b,c,d} such that the product of any two of them increased by 1 is a square — Part 1

 
 
1 + a \,b = A^2   ………..   1 + b \,c = D^2
1 + a \,c = B^2   ………..   1 + b \,d = E^2
1 + a \,d = C^2   ………..   1 + c \,d = F^2

 

In part 1,   we set   a = 1

a = 1
b = n^2 - 1
c = n^2 + 2 \, n
d = 4 \, n^4 + 8 \, n^3 - 4 \, n

1 + a \,b = n^2   ………………………………   1 + b \,c = (n^2 + n - 1)^2
1 + a \,c = (n + 1)^2   ………………………   1 + b \,d = (2 \, n^3 + 2 \, n^2 - 2 \, n - 1)^2
1 + a \,d = (2 \, n^2 + 2 \, n - 1)^2   ………….   1 + c \,d = (2 \, n^3 + 4 \, n^2 - 1)^2

diophantus-1

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Advertisements

About benvitalis

math grad - Interest: Number theory
This entry was posted in Number Puzzles and tagged . Bookmark the permalink.

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s