Some Triangular number identities — Part 2

 
 
Prove the following relations, involving triangular numbers;

 

T_{k + n} = T_{k} + T_{2 \, n \, m + n},     where     k = 2 \, n \, m^2 + (2 \, n + 1) \,m

 

T_{n} = T_{n-1} + T_{m} + T_{k},     where     n = (m^2 + k^2 + m + k)/2

 

T_{a+n} + T_{b+n} + T_{c+n} + T_{d+n} \; = \; T_{m - a} + T_{m - b} + T_{m - c} + T_{m - d}

where     m = n + (a+b+c+d)/2

 

T_{a} + T_{b} = ( \,T_{n^2 + n - 1} + T_{n^2 - n - 1} \,) \, ( \,T_{m^2 + m - 1} + T_{m^2 - m - 1} \,)

where     a = n^2 \, m^2 + n \, m - 1,     b = n^2 \, m^2 - n \, m - 1

 

T_{7 \, c + 1} + T_{c - 1} = (T_{7 \, n + 1} + T_{n - 1}) (T_{7 \, m + 1} + T_{m - 1})

where     c = 5 \,n \,m + n + m

 

T_{n} - T_{m} = 3^{2 \; \alpha} k,

where     n = 3^{2 \; \alpha} k + (3^{2 \; \alpha} - 1)/2,     m = 3^{2 \; \alpha} k - (3^{2 \; \alpha} + 1)/2

 

T_{n} + T_{m} = T_{m - 3^{2 \; \alpha} k} + T_{m + 3^{2 \;  \alpha} k}

where     n = 3^{2 \; \alpha} k^2 + (3^{2 \, \alpha} - 1)/2,     m = 3^{2 \; \alpha} k^2 - (3^{2 \; \alpha} + 1)/2

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Advertisements

About benvitalis

math grad - Interest: Number theory
This entry was posted in Number Puzzles and tagged , . Bookmark the permalink.

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s