## x^2 + y^2 = z^3, with z < 100

$x^2 + y^2 = z^3$

$x, y, z$   are distinct positive integers and   $z < 100$

$2^3 = 2^2 + 2^2$
$5^3 = 5^2 + 10^2 = 2^2 + 11^2$
$8^3 = 16^2 + 16^2$

$10^3 = 10^2 + 30^2 = 18^2 + 26^2$
$13^3 = 9^2 + 46^2 = 26^2 + 39^2$
$17^3 = 17^2 + 68^2 = 47^2 + 52^2$
$18^3 = 54^2 + 54^2$

$20^3 = 40^2 + 80^2 = 16^2 + 88^2$
$25^3 = 75^2 + 100^2 = 44^2 + 117^2 = 35^2 + 120^2$
$26^3 = 26^2 + 130^2 = 74^2 + 110^2$
$29^3 = 65^2 + 142^2 = 58^2 + 145^2$

$32^3 = 128^2 + 128^2$
$34^3 = 10^2 + 198^2 = 102^2 + 170^2$
$37^3 = 37^2 + 222^2 = 107^2 + 198^2$

$40^3 = 80^2 + 240^2 = 144^2 + 208^2$
$41^3 = 115^2 + 236^2 = 164^2 + 205^2$
$45^3 = 54^2 + 297^2 = 135^2 + 270^2$

$50^3 = 50^2 + 350^2 = 146^2 + 322^2 = 170^2 + 310^2 = 250^2 + 250^2$
$52^3 = 72^2 + 368^2 = 208^2 + 312^2$
$53^3 = 106^2 + 371^2 = 259^2 + 286^2$
$58^3 = 154^2 + 414^2 = 174^2 + 406^2$

$61^3 = 234^2 + 415^2 = 305^2 + 366^2$
$65^3 = 7^2 + 524^2$
$65^3 = 65^2 + 520^2$
$65^3 = 140^2 + 505^2$
$65^3 = 191^2 + 488^2$
$65^3 = 208^2 + 481^2$
$65^3 = 260^2 + 455^2$
$65^3 = 320^2 + 415^2$
$65^3 = 364^2 + 377^2$
$68^3 = 136^2 + 544^2 = 376^2 + 416^2$

$72^3 = 432^2 + 432^2$
$73^3 = 219^2 + 584^2 = 296^2 + 549^2$
$74^3 = 182^2 + 610^2 = 370^2 + 518^2$

$80^3 = 320^2 + 640^2$
$82^3 = 82^2 + 738^2 = 242^2 + 702^2$
$85^3 = 51^2 + 782^2$
$85^3 = 170^2 + 765^2$
$85^3 = 210^2 + 755^2$
$85^3 = 285^2 + 730^2$
$85^3 = 323^2 + 714^2$
$85^3 = 413^2 + 666^2$
$85^3 = 478^2 + 621^2$
$85^3 = 510^2 + 595^2$
$89^3 = 88^2 + 835^2 = 445^2 + 712^2$

$90^3 = 270^2 + 810^2$
$97^3 = 388^2 + 873^2 = 297^2 + 908^2$
$98^3 = 686^2 + 686^2$