# Monthly Archives: December 2016

## Antimagic Square 4X4

An antimagic square is an     array of integers from  1   to     such that each row, column, and main diagonal produces a different sum such that these sums form a sequence of consecutive integers. … Continue reading

## Make {x^2 + 3xy + y^2, x^2 + 5xz + z^2, y^2 + 7yz + z^2} squares

#1                           Here are the first few solutions:                                                                                 #2                                                                                                           #3                                 the first few solutions:                                                                               #4                           … Continue reading

## Make {x^2 – 2xy + y^2, x^2 – 3xz + z^2, y^2 + 5yz + z^2} squares … Part 3

Find three positive integers     such that     and   Here are the first few solutions     find the next few solutions                           … Continue reading

## Make {x^2 – 2xy + y^2, x^2 + 3xz + z^2, y^2 – 5yz + z^2} squares … Part 2

Find three positive integers     such that     and   Here are the first few solutions:       Find the next few solutions.                         … Continue reading

## Make {x^2 + 2xy + y^2, x^2 + 3xz + z^2, y^2 – 5yz + z^2} squares … Part 1

where     are positive integers.   Here are the first few solutions:     Find the next few solutions.                                     … Continue reading

## To make {x^2 + y^2 – 1, x^2 – y^2 – 1} squares

Find two distinct positive integers     to make the two expressions squares       Here’s one family of solutions:                                                                                                                                                and another family of solutions                 … Continue reading

## Make {(x^2 + x*y + y^2), (x^2 – x*z + z^2), (y^2 + y*z + z^2)} squares … Part 5

These are the first few solutions I found:

## Make {(a^2 + 12*b^2), (12*a^2 + b^2)} squares

Find distinct positive integers     such that       Paul found and their multiples                                           … Continue reading

Posted in Number Puzzles | Tagged | 2 Comments

## Make {(x^2 – xy + y^2), (x^2 – xz + z^2), (y^2 – yz + z^2)} squares … Part 4

Find distinct integers     to make the three expressions squares       (1) Pipo found:     (2)   Here’s another set of solutions                         … Continue reading

Posted in Number Puzzles | Tagged | 2 Comments

## Make {(x^2 + xy + y^2), (x^2 – xz + z^2), (y^2 – yz + z^2)} squares … Part 3

Find distinct integers     to make the three expressions squares