3 x 3 magic square w/ entries are distinct integer squares

 
 
       A^2   …..   B^2   …..   C^2
       D^2   …..   E^2   …..   F^2
       G^2   …..   H^2   …..   I^2

is a magic square,
 

Can you find a number   m   such that

A^2 + B^2 + C^2
= \; D^2 + E^2 + F^2
= \; G^2 + H^2 + I^2
= \; A^2 + D^2 + G^2
= \; B^2 + E^2 + H^2
= \; C^2 + F^2 + I^2
= \; A^2 + E^2 + I^2
= \; C^2 + E^2 + G^2 \; =  \; m

                               ——————————————–             

A \; ..... \; B \; ..... \; C
D \; ..... \; E \; ..... \; F
G \; ..... \; H \; ..... \; I

A+B+C = 3 \,E \; ..... \; D+E+F = 3 \,E \; ..... \; G+H+I = 3 \,E \; ..... \; A+E+I = 3 \,E
A+D+G = 3 \,E \; ..... \; B+E+H = 3 \,E \; ..... \; C+F+I = 3 \,E \; ..... \; C+E+G = 3 \,E

A+I \; = \; B+H \; = \; C+G \; = \; D+F \; = \; 2 \,E

A+I \; = \; 2 \,E
(A-E) \; + \; (I-E) \; = \; 0
(A-E) \; = \; (E-I)

If we define   n = A-E   and   m = C-E   the magic square contains the terms

E+n \; .......... \; E+m
                 E
E-m \; .......... \; E-n

 
From this the remaining terms follow,   due to the requirement that each row and column sum to   3 \,E

E+n                  E-n-m                  E+m
E-n+m                  E                          E+n-m
E-m                  E+n+m                  E-n

 
Imagine a magic square comprised entirely of square integers.

a^2     b^2     c^2
d^2     e^2     f^2
g^2     h^2     i^2

a^2 = E+n              b^2 = E-n-m             c^2 = E+m
d^2 = E-n+m              e^2 = E                     f^2 = E+n-m
g^2 = E-m              h^2 = E+n+m             i^2 = E-n

 

a^2 + i^2 \; = \; b^2 + h^2 \; = \; c^2 + g^2 \; = \; f^2 + d^2 \; = \; 2 \,e^2

 
a^2 \, i^2 \; = \; (E+n) \,(E-n) \; = \; E^2 \; - \; n^2
a^2 \, i^2 \; + \; n^2 \; = \; E^2 \; = \; e^4

b^2 \, h^2 \; = \; (E-n-m) \,(E+n+m) \; = \; E^2 \; - \; (n+m)^2
b^2 \, h^2 \; + \; (n+m)^2 \; = \; E^2 \; = \; e^4

c^2 \, g^2 \; = \; (E+m) \,(E-m) \; = \; E^2 \; - \; m^2
c^2 \, g^2 \; + \; m^2 \; = \; E^2 \; = \; e^4

f^2 \, d^2 \; = \; (E+n-m) \,(E-n+m) \; = \; E^2 \; - \; (n-m)^2
f^2 \, d^2 \; + \; (n-m)^2 \; = \; E^2 \; = \; e^4

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Advertisements

About benvitalis

math grad - Interest: Number theory
This entry was posted in Number Puzzles and tagged . Bookmark the permalink.

4 Responses to 3 x 3 magic square w/ entries are distinct integer squares

  1. Paul says:

    That would be the holy grail of magic squares of squares if we could find that, if one exists (m), it is estimated to be over 15 digits in length.

    P.

    • benvitalis says:

      For the smallest magic square,   E   must be odd, and all other squares are odd.   Since we want the square entries to be distinct, we need to choose   E   so that   2 \, E^2   can be expressed in at least four distinct ways as the sum of two squares

      • Paul says:

        It has been shown that the magic square of squares has the form

        a² b² c² x+y, x-y-z, x+z
        d² e² f² = x-y+z, x, x+y-z
        g² h² i² x-z, x+y+z, x-y

        and that x*y*z*(y+z)*(y-z) has to be divisible by 1546645545467664981281303961600. which is all primes <=67 except 59.

  2. benvitalis says:

    I’ll revisit the problem at a later time

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s