tan A = tan B + tan C + tan D

 
 
\tan \, 84^\circ \; = \; tan \, 78^\circ \; + \; tan \, 72^\circ \; + \; tan \, 60^\circ

\tan \, 80^\circ \; = \; tan \, 70^\circ \; + \; tan \, 60^\circ \; + \; tan \, 50^\circ

 
Find other   4-tuples   (a, b, c, d)   of distinct integers between   0^\circ   and   90^\circ   that
satisfy the relation

tan \, A^\circ\; = \; tan \, B^\circ \; + \; tan \, C^\circ \; + \; tan \, D^\circ
 

Other solutions:

\tan \, 72^\circ \; = \; tan \, 66^\circ \; + \; tan \, 36^\circ \; + \; tan \, 6^\circ
\tan \, 70^\circ \; = \; tan \, 60^\circ \; + \; tan \, 40^\circ \; + \; tan \, 10^\circ
\tan \, 72^\circ \; = \; tan \, 60^\circ \; + \; tan \, 42^\circ \; + \; tan \, 24^\circ
\tan \, 78^\circ \; = \; tan \, 66^\circ \; + \; tan \, 60^\circ \; + \; tan \, 36^\circ
\tan \, 78^\circ \; = \; tan \, 72^\circ \; + \; tan \, 42^\circ \; + \; tan \, 36^\circ

 
 

How many such equations can you produce if we allow repeated angles?

 
Hint:   there are 49 such equations

 

Determine whether there are 3-term equations and 5-term equations.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Advertisements

About benvitalis

math grad - Interest: Number theory
This entry was posted in Number Puzzles and tagged , . Bookmark the permalink.

4 Responses to tan A = tan B + tan C + tan D

  1. Paul says:

    Here are the 4 term ones with distinct integers

    Tan 6 + Tan 36 + Tan 66 = Tan 72.
    Tan 10 + Tan 40 + Tan 60 = Tan 70.
    Tan 24 + Tan 42 + Tan 60 = Tan 72.
    Tan 50 + Tan 60 + Tan 70 = Tan 80.
    Tan 60 + Tan 72 + Tan 78 = Tan 84.

    and those with repeats

    Tan 4 + Tan 4 + Tan 43 = Tan 47.
    Tan 4 + Tan 82 + Tan 82 = Tan 86.
    Tan 5 + Tan 80 + Tan 80 = Tan 85.
    Tan 6 + Tan 6 + Tan 42 = Tan 48.
    Tan 6 + Tan 36 + Tan 66 = Tan 72.
    Tan 6 + Tan 78 + Tan 78 = Tan 84.
    Tan 7 + Tan 76 + Tan 76 = Tan 83.
    Tan 8 + Tan 8 + Tan 41 = Tan 49.
    Tan 8 + Tan 74 + Tan 74 = Tan 82.
    Tan 9 + Tan 72 + Tan 72 = Tan 81.
    Tan 10 + Tan 10 + Tan 40 = Tan 50.
    Tan 10 + Tan 40 + Tan 60 = Tan 70.
    Tan 11 + Tan 68 + Tan 68 = Tan 79.
    Tan 13 + Tan 64 + Tan 64 = Tan 77.
    Tan 14 + Tan 14 + Tan 38 = Tan 52.
    Tan 14 + Tan 62 + Tan 62 = Tan 76.
    Tan 16 + Tan 58 + Tan 58 = Tan 74.
    Tan 17 + Tan 56 + Tan 56 = Tan 73.
    Tan 18 + Tan 18 + Tan 36 = Tan 54.
    Tan 18 + Tan 54 + Tan 54 = Tan 72.
    Tan 19 + Tan 52 + Tan 52 = Tan 71.
    Tan 20 + Tan 20 + Tan 35 = Tan 55.
    Tan 20 + Tan 50 + Tan 50 = Tan 70.
    Tan 22 + Tan 46 + Tan 46 = Tan 68.
    Tan 23 + Tan 44 + Tan 44 = Tan 67.
    Tan 24 + Tan 42 + Tan 42 = Tan 66.
    Tan 24 + Tan 42 + Tan 60 = Tan 72.
    Tan 25 + Tan 40 + Tan 40 = Tan 65.
    Tan 26 + Tan 38 + Tan 38 = Tan 64.
    Tan 27 + Tan 36 + Tan 36 = Tan 63.
    Tan 28 + Tan 34 + Tan 34 = Tan 62.
    Tan 29 + Tan 32 + Tan 32 = Tan 61.
    Tan 50 + Tan 60 + Tan 70 = Tan 80.
    Tan 60 + Tan 72 + Tan 78 = Tan 84.

    There are no solutions with 2 or 5 terms (0 < Integers <= 90)

    Paul.

  2. Ng Ser-Hong says:

    For those with repeats indicated by Paul satisfy the relation
    Tan x + Tan x + Tan y = Tan (x+y)

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s