Square triangular numbers | X^3 + Y^2 = Z^4

 
 
Explain the following result:

Each of the first few consecutive square triangular number yields a solution of

X^3 \; + \; Y^2 \; = \; Z^4

( \,T_n \,)^2 \; - \; ( \,T_{n-1} \,)^2
= \; ( \,n \,(n+1)/2 \,)^2 \; - \; ( \,n \,(n-1)/2 \,)^2 \; = \; n^3

 
SQR TN 1

 
6^4 = 8^3 + 28^2
35^4 = 49^3 + 1176^2
204^4 = 288^3 + 41328^2
1189^4 = 1681^3 + 1412040^2
6930^4 = 9800^3 + 48015100^2
40391^4 = 57121^3 + 1631375760^2
235416^4 = 332928^3 + 55420360128^2
1372105^4 = 1940449^3 + 1882670190576^2
7997214^4 = 11309768^3 + 63955420452028^2
46611179^4 = 65918161^3 + 2172601941851880^2
271669860^4 = 384199200^3 + 73804512448220400^2
1583407981^4 = 2239277041^3 + 2507180832055219320^2
9228778026^4 = 13051463048^3 + 85170343840128993628^2
53789260175^4 = 76069501249^3 + 2893284510097771529376^2
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Advertisements

About benvitalis

math grad - Interest: Number theory
This entry was posted in Number Puzzles and tagged . Bookmark the permalink.

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s