(ab)(a + b)(a^2 + ab + b^2) = (cd)(c + d)(c^2 + cd + d^2)

 
 
a \, b \, (a + b) \,(a^2 + a \, b + b^2) \; = \; c \, d \, (c + d) \,(c^2 + c \, d + d^2)

where   a, b, c, d   are integers

 
Here’s one solution:

 
(a, \: b, \: c, \: d) \; = \; (105, \: 1153, \: 455, \: 582)

(105\times 1153)(105 \; + \; 1153)(105^2 \; + \; 105\times 1153 \; + \; 1153^2)
= \; (455\times 582)(455 \; + \; 582)(455^2 \; + \; 455\times 582 \; + \; 582^2)
= \; 222585961555230

 

 
Note that

 
x^5 \; + \; y^5 \; - \; (x+y)^5 \; = \; a^5 \; + \; b^5 \; - \; (a+b)^5
-5 \, x \, y \, (x+y) \, (x^2 + x  \,y + y^2) \; = \; -5 \, a \, b \, (a+b) \, (a^2+ a \, b + b^2)
x \, y \, (x+y) \, (x^2 + x \, y + y^2) \; = \; a \, b \, (a+b) \, (a^2 + a \, b + b^2)

(a, \: b, \: c, \: d) \; = \; (105, \: 1153, \: 455, \: 582)

105^5 \; + \; 1153^5 \; - \; (105+1153)^5 \; = \; 455^5 \; + \; 582^5 \; - \; (455+582)^5

(105\times 1153)(105 \; + \; 1153)(105^2 \; + \; 105\times 1153 \; + \; 1153^2)
= \; (455\times 582)(455 \; + \; 582)(455^2 \; + \; 455\times 582 \; + \; 582^2)
= \; 222585961555230

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Advertisements

About benvitalis

math grad - Interest: Number theory
This entry was posted in Number Puzzles and tagged . Bookmark the permalink.

2 Responses to (ab)(a + b)(a^2 + ab + b^2) = (cd)(c + d)(c^2 + cd + d^2)

  1. Paul says:

    Here are a few more, Format {{a, b, etc},{c, d, etc}}

    {{210, 2306, 7122750769767360}, {910, 1164, 7122750769767360}}
    {{315, 3459, 54088388657920890}, {1365, 1746, 54088388657920890}}
    {{420, 4612,227928024632555520} ,{1820, 2328, 227928024632555520}}

    Paul.

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s