Make {m^2 + n^2, p^2 + q^2, m*n*p*q} squares

 
 
Find four positive integers   m, \; n, \; p, \; q   to make the three expressions squares

m^2 \; + \; n^2
p^2 \; + \; q^2
m \, n \, p \, q

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Advertisements

About benvitalis

math grad - Interest: Number theory
This entry was posted in Number Puzzles and tagged . Bookmark the permalink.

3 Responses to Make {m^2 + n^2, p^2 + q^2, m*n*p*q} squares

  1. Paul says:

    Here are a few

    348^2 + 1015^2 = 353220^2
    740^2 + 777^2 = 574980^2
    348 X 1015 X 740 X 777 = 450660^2

    696^2 + 2030^2 = 1412880^2
    1480^2 + 1554^2 = 2299920^2
    696 X 2030 X 1480 X 1554 = 1802640^2

    1044^2 + 3045^2 = 3178980^2
    2220^2 + 2331^2 = 5174820^2
    1044 X 3045 X 2220 X 2331 = 4055940^2

    435^2 + 3248^2 = 1412880^2
    2260^2 + 2373^2 = 5362980^2
    435 X 3248 X 2260 X 2373 = 2752680^2

    555^2 + 4144^2 = 2299920^2
    1356^2 + 3955^2 = 5362980^2
    555 X 4144 X 1356 X 3955 = 3512040^2

    1392^2 + 4060^2 = 5651520^2
    2960^2 + 3108^2 = 9199680^2
    1392 X 4060 X 2960 X 3108 = 7210560^2

    803^2 + 4380^2 = 3517140^2
    2928^2 + 3355^2 = 9823440^2
    803 X 4380 X 2928 X 3355 = 5877960^2

    1740^2 + 5075^2 = 8830500^2
    3700^2 + 3885^2 = 14374500^2
    1740 X 5075 X 3700 X 3885 = 11266500^2

    245^2 + 6000^2 = 1470000^2
    3603^2 + 4804^2 = 17308812^2
    245 X 6000 X 3603 X 4804 = 5044200^2

    459^2 + 6188^2 = 2840292^2
    949^2 + 6132^2 = 5819268^2
    459 X 6188 X 949 X 6132 = 4065516^2

    2088^2 + 6090^2 = 12715920^2
    4440^2 + 4662^2 = 20699280^2
    2088 X 6090 X 4440 X 4662 = 16223760^2

    870^2 + 6496^2 = 5651520^2
    4520^2 + 4746^2 = 21451920^2
    870 X 6496 X 4520 X 4746 = 11010720^2

    2436^2 + 7105^2 = 17307780^2
    5180^2 + 5439^2 = 28174020^2
    2436 X 7105 X 5180 X 5439 = 22082340^2

    1110^2 + 8288^2 = 9199680^2
    2712^2 + 7910^2 = 21451920^2
    1110 X 8288 X 2712 X 7910 = 14048160^2

    2784^2 + 8120^2 = 22606080^2
    5920^2 + 6216^2 = 36798720^2
    2784 X 8120 X 5920 X 6216 = 28842240^2

    1606^2 + 8760^2 = 14068560^2
    5856^2 + 6710^2 = 39293760^2
    1606 X 8760 X 5856 X 6710 = 23511840^2

    3132^2 + 9135^2 = 28610820^2
    6660^2 + 6993^2 = 46573380^2
    3132 X 9135 X 6660 X 6993 = 36503460^2

    1305^2 + 9744^2 = 12715920^2
    6780^2 + 7119^2 = 48266820^2
    1305 X 9744 X 6780 X 7119 = 24774120^2

    Paul.

  2. Paul says:

    No parametric solution, I solved for Pythagorean triples for equal hypotenuse, then took all 2 length subsets and tested for m n p q equal to a square.

    The first solution is when the hypotenuse is 1073. here my MMa code

    Clear[r,s,n];
    Monitor[Do[p=Solve[r^2+s^2==n^2&&r>0&&s>0&&r<s,{r,s},Integers];
    p={r,s}/.p;t=Cases[Subsets[p,{2}],{{a_,b_},{c_,d_}}/;
    IntegerQ[Sqrt[a b c d]]];t=Flatten[t,1];If[Length[t]>0,
    Print[t[[1,1]],"^2 + ",t[[1,2]],"^2 = ",Sqrt[t[[1,1]]^2 t[[1,2]]^2],"^2"];
    Print[t[[2,1]],"^2 + ",t[[2,2]],"^2 = ",Sqrt[t[[2,1]]^2 t[[2,2]]^2],"^2"];
    Print[t[[1,1]]," X ",t[[1,2]]," X ",t[[2,1]]," X ",t[[2,2]]," = ",Sqrt[t[[1,1]] t[[1,2]] t[[2,1]] t[[2,2]]],"^2"];Print[]],{n,1073,10000}],n]

    Paul.

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s