A^3 + B^3 = C^2, {(A+B), (A^2-A*B+B^2)} are 3 times squares

 
 
Find positive integers   A   and   B   such that

A^3 \; + \; B^3 \; = \; C^2

A \; + \; B \; = \; 3 \, x^2

A^2 \; - \; A \, B \; + \; B^2 \; = \; 3 \, y^2

 

Here the solutions I found for   A \; \leq \; 1000

Check whether I miss any other solutions.

 

2 CUBES SUM 1

 
 
Paul found :

2 CUBES SUM 2

 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Advertisements

About benvitalis

math grad - Interest: Number theory
This entry was posted in Number Puzzles and tagged . Bookmark the permalink.

2 Responses to A^3 + B^3 = C^2, {(A+B), (A^2-A*B+B^2)} are 3 times squares

  1. Paul says:

    Here is what I found

    (1 , 2), 3^2 , 3 x 1^2 , 3 x 1^2
    (2 , 1), 3^2 , 3 x 1^2 , 3 x 1^2
    (2 , 46), 312^2 , 3 x 4^2 , 3 x 26^2
    (4 , 8), 24^2 , 3 x 2^2 , 3 x 4^2
    (8 , 4), 24^2 , 3 x 2^2 , 3 x 4^2
    (8 , 184), 2496^2 , 3 x 8^2 , 3 x 104^2
    (9 , 18), 81^2 , 3 x 3^2 , 3 x 9^2
    (10 , 65), 525^2 , 3 x 5^2 , 3 x 35^2
    (11 , 37), 228^2 , 3 x 4^2 , 3 x 19^2
    (16 , 32), 192^2 , 3 x 4^2 , 3 x 16^2
    (18 , 9), 81^2 , 3 x 3^2 , 3 x 9^2
    (18 , 414), 8424^2 , 3 x 12^2 , 3 x 234^2
    (22 , 26), 168^2 , 3 x 4^2 , 3 x 14^2
    (25 , 50), 375^2 , 3 x 5^2 , 3 x 25^2
    (26 , 22), 168^2 , 3 x 4^2 , 3 x 14^2
    (32 , 16), 192^2 , 3 x 4^2 , 3 x 16^2
    (32 , 736), 19968^2 , 3 x 16^2 , 3 x 416^2
    (36 , 72), 648^2 , 3 x 6^2 , 3 x 36^2
    (37 , 11), 228^2 , 3 x 4^2 , 3 x 19^2
    (40 , 260), 4200^2 , 3 x 10^2 , 3 x 140^2
    (44 , 148), 1824^2 , 3 x 8^2 , 3 x 76^2
    (46 , 2), 312^2 , 3 x 4^2 , 3 x 26^2
    (49 , 98), 1029^2 , 3 x 7^2 , 3 x 49^2
    (50 , 25), 375^2 , 3 x 5^2 , 3 x 25^2
    (64 , 128), 1536^2 , 3 x 8^2 , 3 x 64^2
    (65 , 10), 525^2 , 3 x 5^2 , 3 x 35^2
    (65 , 610), 15075^2 , 3 x 15^2 , 3 x 335^2
    (72 , 36), 648^2 , 3 x 6^2 , 3 x 36^2
    (78 , 354), 6696^2 , 3 x 12^2 , 3 x 186^2
    (81 , 162), 2187^2 , 3 x 9^2 , 3 x 81^2
    (88 , 104), 1344^2 , 3 x 8^2 , 3 x 56^2
    (90 , 585), 14175^2 , 3 x 15^2 , 3 x 315^2
    (98 , 49), 1029^2 , 3 x 7^2 , 3 x 49^2
    (99 , 333), 6156^2 , 3 x 12^2 , 3 x 171^2
    (100 , 200), 3000^2 , 3 x 10^2 , 3 x 100^2
    (104 , 88), 1344^2 , 3 x 8^2 , 3 x 56^2
    (121 , 242), 3993^2 , 3 x 11^2 , 3 x 121^2
    (128 , 64), 1536^2 , 3 x 8^2 , 3 x 64^2
    (144 , 288), 5184^2 , 3 x 12^2 , 3 x 144^2
    (148 , 44), 1824^2 , 3 x 8^2 , 3 x 76^2
    (162 , 81), 2187^2 , 3 x 9^2 , 3 x 81^2
    (169 , 338), 6591^2 , 3 x 13^2 , 3 x 169^2
    (176 , 592), 14592^2 , 3 x 16^2 , 3 x 304^2
    (183 , 249), 4644^2 , 3 x 12^2 , 3 x 129^2
    (184 , 8), 2496^2 , 3 x 8^2 , 3 x 104^2
    (196 , 392), 8232^2 , 3 x 14^2 , 3 x 196^2
    (198 , 234), 4536^2 , 3 x 12^2 , 3 x 126^2
    (200 , 100), 3000^2 , 3 x 10^2 , 3 x 100^2
    (225 , 450), 10125^2 , 3 x 15^2 , 3 x 225^2
    (234 , 198), 4536^2 , 3 x 12^2 , 3 x 126^2
    (242 , 121), 3993^2 , 3 x 11^2 , 3 x 121^2
    (242 , 433), 9765^2 , 3 x 15^2 , 3 x 217^2
    (249 , 183), 4644^2 , 3 x 12^2 , 3 x 129^2
    (256 , 512), 12288^2 , 3 x 16^2 , 3 x 256^2
    (260 , 40), 4200^2 , 3 x 10^2 , 3 x 140^2
    (275 , 925), 28500^2 , 3 x 20^2 , 3 x 475^2
    (288 , 144), 5184^2 , 3 x 12^2 , 3 x 144^2
    (289 , 578), 14739^2 , 3 x 17^2 , 3 x 289^2
    (305 , 895), 27300^2 , 3 x 20^2 , 3 x 455^2
    (324 , 648), 17496^2 , 3 x 18^2 , 3 x 324^2
    (330 , 345), 8775^2 , 3 x 15^2 , 3 x 195^2
    (333 , 99), 6156^2 , 3 x 12^2 , 3 x 171^2
    (338 , 169), 6591^2 , 3 x 13^2 , 3 x 169^2
    (345 , 330), 8775^2 , 3 x 15^2 , 3 x 195^2
    (352 , 416), 10752^2 , 3 x 16^2 , 3 x 224^2
    (354 , 78), 6696^2 , 3 x 12^2 , 3 x 186^2
    (361 , 722), 20577^2 , 3 x 19^2 , 3 x 361^2
    (392 , 196), 8232^2 , 3 x 14^2 , 3 x 196^2
    (400 , 800), 24000^2 , 3 x 20^2 , 3 x 400^2
    (414 , 18), 8424^2 , 3 x 12^2 , 3 x 234^2
    (416 , 352), 10752^2 , 3 x 16^2 , 3 x 224^2
    (433 , 242), 9765^2 , 3 x 15^2 , 3 x 217^2
    (441 , 882), 27783^2 , 3 x 21^2 , 3 x 441^2
    (450 , 225), 10125^2 , 3 x 15^2 , 3 x 225^2
    (470 , 730), 22200^2 , 3 x 20^2 , 3 x 370^2
    (484 , 968), 31944^2 , 3 x 22^2 , 3 x 484^2
    (485 , 715), 21900^2 , 3 x 20^2 , 3 x 365^2
    (512 , 256), 12288^2 , 3 x 16^2 , 3 x 256^2
    (546 , 777), 25137^2 , 3 x 21^2 , 3 x 399^2
    (550 , 650), 21000^2 , 3 x 20^2 , 3 x 350^2
    (578 , 289), 14739^2 , 3 x 17^2 , 3 x 289^2
    (585 , 90), 14175^2 , 3 x 15^2 , 3 x 315^2
    (592 , 176), 14592^2 , 3 x 16^2 , 3 x 304^2
    (610 , 65), 15075^2 , 3 x 15^2 , 3 x 335^2
    (648 , 324), 17496^2 , 3 x 18^2 , 3 x 324^2
    (650 , 550), 21000^2 , 3 x 20^2 , 3 x 350^2
    (715 , 485), 21900^2 , 3 x 20^2 , 3 x 365^2
    (722 , 361), 20577^2 , 3 x 19^2 , 3 x 361^2
    (730 , 470), 22200^2 , 3 x 20^2 , 3 x 370^2
    (732 , 996), 37152^2 , 3 x 24^2 , 3 x 516^2
    (736 , 32), 19968^2 , 3 x 16^2 , 3 x 416^2
    (777 , 546), 25137^2 , 3 x 21^2 , 3 x 399^2
    (792 , 936), 36288^2 , 3 x 24^2 , 3 x 504^2
    (800 , 400), 24000^2 , 3 x 20^2 , 3 x 400^2
    (851 , 877), 35928^2 , 3 x 24^2 , 3 x 499^2
    (877 , 851), 35928^2 , 3 x 24^2 , 3 x 499^2
    (882 , 441), 27783^2 , 3 x 21^2 , 3 x 441^2
    (895 , 305), 27300^2 , 3 x 20^2 , 3 x 455^2
    (925 , 275), 28500^2 , 3 x 20^2 , 3 x 475^2
    (936 , 792), 36288^2 , 3 x 24^2 , 3 x 504^2
    (968 , 484), 31944^2 , 3 x 22^2 , 3 x 484^2
    (996 , 732), 37152^2 , 3 x 24^2 , 3 x 516^2

    Paul.

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s