Equation : x^2 + y^2 – x = 4*x*y

 
 
The first few solutions of the equation   x^2 \; + \; y^2 \; - \; x \; = \; 4 \, x \, y   are:

x =   1   …………………… y = 0   or   y = 4
x = 16 =   4^2   …………….. y = 4   or   y = 60
x = 225 =   15^2   …………… y = 60   or   y = 840
x = 3136 =   56^2   ………….. y = 840   or   y = 11704
x = 43681 =   209^2   ………… y = 11704   or   y = 163020
x = 608400 =   780^2   ……….. y = 163020   or   y = 2270580
x = 8473921 =   2911^2   ……… y = 2270580   or   y = 31625104
x = 118026496 =   10864^2   …… y = 31625104   or   y = 440480880
x = 1643897025 =   40545^2   ….. y = 440480880   or   y = 6135107220

 

3(1^2) \; + \; 1 \; = \; 2^2 \; = \; ( \,2(1) - 0 \,)^2
3(4^2) \; + \; 1 \; = \; 7^2 \; = \; ( \,2(4) - 1 \,)^2
3(15^2) \; + \; 1 \; = \; 26^2 \; = \; ( \,2(15) - 4 \,)^2
3(56^2) \; + \; 1 \; = \; 97^2 \; = \; ( \,2(56) - 15 \,)^2
3(209^2) \; + \; 1 \; = \; 362^2 \; = \; ( \,2(209) - 56 \,)^2
3(780^2) \; + \; 1 \; = \; 1351^2 \; = \; ( \,2(780) - 209 \,)^2
3(2911^2) \; + \; 1 \; = \; 5042^2 \; = \; ( \,2(2911) - 780 \,)^2
3(10864^2) \; + \; 1 \; = \; 18817^2 \; = \; ( \,2(10864) - 2911 \,)^2
3(40545^2) \; + \; 1 \; = \; 70226^2 \; = \; ( \,2(40545) - 10864 \,)^2

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Advertisements

About benvitalis

math grad - Interest: Number theory
This entry was posted in Number Puzzles and tagged . Bookmark the permalink.

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s