## To make {(A + B^2), (A/n + B^2)} squares

$A \; + \; B^2 \; = \; C^2$
$A/n \; + \; B^2 \; = \; D^2$

n = 2

$48 + 1 = 7^2 ......................... (48/2) + 1 = 5^2$
$1680 + 1 = 41^2 ...................... (1680/2) + 1 = 29^2$
$57120 + 1 = 239^2 .................... (57120/2) + 1 = 169^2$
$1940448 + 1 = 1393^2 ................. (1940448/2) + 1 = 985^2$
$65918160 + 1 = 8119^2 ................ (65918160/2) + 1 = 5741^2$
$2239277040 + 1 = 47321^2 ............. (2239277040/2) + 1 = 33461^2$
$76069501248 + 1 = 275807^2 ........... (76069501248/2) + 1 = 195025^2$
$2584123765440 + 1 = 1607521^2 ........ (2584123765440/2) + 1 = 1136689^2$
……………………………………………………
……………………………………………………

Consider all Pythagorean triples   $(x, x+1, z)$   ordered by increasing   $z$
$x^2 + (x+1)^2 = z^2$
when   $x^2 + (x+1)^2$   doubled, we obtain,    $(2 x+1)^2 + 1$
then,    $2 z^2 - 1 = (2 x+1)^2$
the sequence   $z$,   5,   29,   169,   985,   5741,   33461,   195025,   1136689
is such that
$2 z^2$   =   an odd square   +   1

n = 3

$24 + 1 = 5^2 .................... (24/3) + 1 = 3^2$
$360 + 1 = 19^2 .................. (360/3) + 1 = 11^2$
$5040 + 1 = 71^2 ................. (5040/3) + 1 = 41^2$
$70224 + 1 = 265^2 ............... (70224/3) + 1 = 153^2$
$978120 + 1 = 989^2 .............. (978120/3) + 1 = 571^2$
$13623480 + 1 = 3691^2 ........... (13623480/3) + 1 = 2131^2$
$189750624 + 1 = 13775^2 ......... (189750624/3) + 1 = 7953^2$
$2642885280 + 1 = 51409^2 ........ (2642885280/3) + 1 = 29681^2$
…………………………………………………..
…………………………………………………..

the sequence   3,   11,   41,   153,   571,   2131,   7953,   29681

is    a(n) = 4   a(n-1) – a(n-2)

n = 5

$15 + 1 = 4^2 ................. (15/5) + 1 = 2^2 ............... = (F_{3})^2$
$120 + 1 = 11^2 ............... (120/5) + 1 = 5^2 .............. = (F_{5})^2$
$840 + 1 = 29^2 ............... (840/5) + 1 = 13^2 ............. = (F_{7})^2$
$5775 + 1 = 76^2 .............. (5775/5) + 1 = 34^2 ............ = (F_{9})^2$
$39600 + 1 = 199^2 ............ (39600/5) + 1 = 89^2 ........... = (F_{11})^2$
$271440 + 1 = 521^2 ........... (271440/5) + 1 = 233^2 ......... = (F_{13})^2$
$1860495 + 1 = 1364^2 ......... (1860495/5) + 1 = 610^2 ........ = (F_{15})^2$
$12752040 + 1 = 3571^2 ........ (12752040/5) + 1 = 1597^2 ...... = (F_{17})^2$
$87403800 + 1 = 9349^2 ........ (87403800/5) + 1 = 4181^2 ...... = (F_{19})^2$
$599074575 + 1 = 24476^2 ...... (599074575/5) + 1 = 10946^2 .... = (F_{21})^2$
$4106118240 + 1 = 64079^2 ..... (4106118240/5) + 1 = 28657^2 ... = (F_{23})^2$
$28143753120 + 1 = 167761^2 ... (28143753120/5) + 1 = 75025^2 .. = (F_{25})^2$

n = 6

$48 + 1 = 7^2 .................. (48/6) + 1 = 3^2$
$288 + 1 = 17^2 ................ (288/6) + 1 = 7^2$
$5040 + 1 = 71^2 ............... (5040/6) + 1 = 29^2$
$28560 + 1 = 169^2 ............. (28560/6) + 1 = 69^2$
$494208 + 1 = 703^2 ............ (494208/6) + 1 = 287^2$
$2798928 + 1 = 1673^2 .......... (2798928/6) + 1 = 683^2$
$48427680 + 1 = 6959^2 ......... (48427680/6) + 1 = 2841^2$
$274266720 + 1 = 16561^2 ....... (274266720/6) + 1 = 6761^2$
$4745418768 + 1 = 68887^2 ...... (4745418768/6) + 1 = 28123^2$
………………………………………………………..
………………………………………………………..

n = 7

$168 + 1 = 13^2 ............... (168/7) + 1 = 5^2$
$840 + 1 = 29^2 ............... (840/7) + 1 = 11^2$
$43680 + 1 = 209^2 ............ (43680/7) + 1 = 79^2$
$214368 + 1 = 463^2 ........... (214368/7) + 1 = 175^2$
$11095560 + 1 = 3331^2 ........ (11095560/7) + 1 = 1259^2$
$54449640 + 1 = 7379^2 ........ (54449640/7) + 1 = 2789^2$
$2818229568 + 1 = 53087^2 ..... (2818229568/7) + 1 = 20065^2$
$13829995200 + 1 = 117601^2 ... (13829995200/7) + 1 = 44449^2$
………………………………………………………..
………………………………………………………..

n = 8

$24 + 1 = 5^2 ................ (24/8) + 1 = 2^2 = 1 + T_2$
$120 + 1 = 11^2 .............. (120/8) + 1 = 4^2 = 1 + T_5$
$960 + 1 = 31^2 .............. (960/8) + 1 = 11^2 = 1 + T_{15}$
$4224 + 1 = 65^2 ............. (4224/8) + 1 = 23^2 = 1 + T_{32}$
$32760 + 1 = 181^2 ........... (32760/8) + 1 = 64^2 = 1 + T_{90}$
$143640 + 1 = 379^2 .......... (143640/8) + 1 = 134^2 = 1 + T_{189}$
$1113024 + 1 = 1055^2 ........ (1113024/8) + 1 = 373^2 = 1 + T_{527}$
$4879680 + 1 = 2209^2 ........ (4879680/8) + 1 = 781^2 = 1 + T_{1104}$
$37810200 + 1 = 6149^2 ....... (37810200/8) + 1 = 2174^2 = 1 + T_{3074}$
$165765624 + 1 = 12875^2 ..... (165765624/8) + 1 = 4552^2 = 1 + T_{6437}$
……………………………………………………………………….
………………………………………………………………………..