To make {(x+1),(y+1),(x+y+1),(x-y+1)} all square

 
 
 
Find two integers   x, \; y   such that

x \; + \; 1
y \; + \; 1
x \; + \; y \; + \; 1
x \; - \; y \; + \; 1

are all squares

Here’s one example,     x = 168,    y = 120

168 \; + \; 1 \; = \; 13^2
120 \; + \; 1 \; = \; 11^2
168 \; + \; 120 \; + \; 1 \; = \; 17^2
168 \; - \; 120 \; + \; 1 \; = \; 7^2

 

Can you find another pair   (x, \; y) ?

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Advertisements

About benvitalis

math grad - Interest: Number theory
This entry was posted in Number Puzzles and tagged . Bookmark the permalink.

4 Responses to To make {(x+1),(y+1),(x+y+1),(x-y+1)} all square

  1. paul says:

    Here are 3 more

    x = 1155, y = 960
    1155 + 1 = 34^2
    960 + 1 = 31^2
    1155 + 960 + 1 = 46^2
    1155 – 960 + 1 = 14^2

    x = 1368, y = 840
    1368 + 1 = 37^2
    840 + 1 = 29^2
    1368 + 840 + 1 = 47^2
    1368 – 840 + 1 = 23^2

    x = 2499, y = 2400
    2499 + 1 = 50^2
    2400 + 1 = 49^2
    2499 + 2400 + 1 = 70^2
    2499 – 2400 + 1 = 10^2

    Paul.

    • paul says:

      and those where Y < x < 1000000

      x = 5624, y = 3024
      5624 + 1 = 75^2
      3024 + 1 = 55^2
      5624 + 3024 + 1 = 93^2
      5624 – 3024 + 1 = 51^2

      x = 7920, y = 6240
      7920 + 1 = 89^2
      6240 + 1 = 79^2
      7920 + 6240 + 1 = 119^2
      7920 – 6240 + 1 = 41^2

      x = 29928, y = 17160
      29928 + 1 = 173^2
      17160 + 1 = 131^2
      29928 + 17160 + 1 = 217^2
      29928 – 17160 + 1 = 113^2

      x = 33488, y = 11880
      33488 + 1 = 183^2
      11880 + 1 = 109^2
      33488 + 11880 + 1 = 213^2
      33488 – 11880 + 1 = 147^2

      x = 47523, y = 43680
      47523 + 1 = 218^2
      43680 + 1 = 209^2
      47523 + 43680 + 1 = 302^2
      47523 – 43680 + 1 = 62^2

      x = 54288, y = 43680
      54288 + 1 = 233^2
      43680 + 1 = 209^2
      54288 + 43680 + 1 = 313^2
      54288 – 43680 + 1 = 103^2

      x = 60515, y = 25920
      60515 + 1 = 246^2
      25920 + 1 = 161^2
      60515 + 25920 + 1 = 294^2
      60515 – 25920 + 1 = 186^2

      x = 70224, y = 63000
      70224 + 1 = 265^2
      63000 + 1 = 251^2
      70224 + 63000 + 1 = 365^2
      70224 – 63000 + 1 = 85^2

      x = 81795, y = 58080
      81795 + 1 = 286^2
      58080 + 1 = 241^2
      81795 + 58080 + 1 = 374^2
      81795 – 58080 + 1 = 154^2

      x = 88803, y = 57120
      88803 + 1 = 298^2
      57120 + 1 = 239^2
      88803 + 57120 + 1 = 382^2
      88803 – 57120 + 1 = 178^2

      x = 155235, y = 43680
      155235 + 1 = 394^2
      43680 + 1 = 209^2
      155235 + 43680 + 1 = 446^2
      155235 – 43680 + 1 = 334^2

      x = 245024, y = 235224
      245024 + 1 = 495^2
      235224 + 1 = 485^2
      245024 + 235224 + 1 = 693^2
      245024 – 235224 + 1 = 99^2

      x = 310248, y = 175560
      310248 + 1 = 557^2
      175560 + 1 = 419^2
      310248 + 175560 + 1 = 697^2
      310248 – 175560 + 1 = 367^2

      x = 372099, y = 297024
      372099 + 1 = 610^2
      297024 + 1 = 545^2
      372099 + 297024 + 1 = 818^2
      372099 – 297024 + 1 = 274^2

      x = 422499, y = 93024
      422499 + 1 = 650^2
      93024 + 1 = 305^2
      422499 + 93024 + 1 = 718^2
      422499 – 93024 + 1 = 574^2

      x = 422499, y = 201600
      422499 + 1 = 650^2
      201600 + 1 = 449^2
      422499 + 201600 + 1 = 790^2
      422499 – 201600 + 1 = 470^2

      x = 616224, y = 561000
      616224 + 1 = 785^2
      561000 + 1 = 749^2
      616224 + 561000 + 1 = 1085^2
      616224 – 561000 + 1 = 235^2

      Paul.

      • paul says:

        and why not to 10000000

        x = 1056783, y = 261120
        1056783 + 1 = 1028^2
        261120 + 1 = 511^2
        1056783 + 261120 + 1 = 1148^2
        1056783 – 261120 + 1 = 892^2

        x = 1085763, y = 982080
        1085763 + 1 = 1042^2
        982080 + 1 = 991^2
        1085763 + 982080 + 1 = 1438^2
        1085763 – 982080 + 1 = 322^2

        x = 1505528, y = 844560
        1505528 + 1 = 1227^2
        844560 + 1 = 919^2
        1505528 + 844560 + 1 = 1533^2
        1505528 – 844560 + 1 = 813^2

        x = 1625624, y = 491400
        1625624 + 1 = 1275^2
        491400 + 1 = 701^2
        1625624 + 491400 + 1 = 1455^2
        1625624 – 491400 + 1 = 1065^2

        x = 1755624, y = 303600
        1755624 + 1 = 1325^2
        303600 + 1 = 551^2
        1755624 + 303600 + 1 = 1435^2
        1755624 – 303600 + 1 = 1205^2

        x = 1999395, y = 776160
        1999395 + 1 = 1414^2
        776160 + 1 = 881^2
        1999395 + 776160 + 1 = 1666^2
        1999395 – 776160 + 1 = 1106^2

        x = 2550408, y = 2042040
        2550408 + 1 = 1597^2
        2042040 + 1 = 1429^2
        2550408 + 2042040 + 1 = 2143^2
        2550408 – 2042040 + 1 = 713^2

        x = 2829123, y = 2825760
        2829123 + 1 = 1682^2
        2825760 + 1 = 1681^2
        2829123 + 2825760 + 1 = 2378^2
        2829123 – 2825760 + 1 = 58^2

        x = 2873024, y = 2449224
        2873024 + 1 = 1695^2
        2449224 + 1 = 1565^2
        2873024 + 2449224 + 1 = 2307^2
        2873024 – 2449224 + 1 = 651^2

        x = 3125823, y = 591360
        3125823 + 1 = 1768^2
        591360 + 1 = 769^2
        3125823 + 591360 + 1 = 1928^2
        3125823 – 591360 + 1 = 1592^2

        x = 3330624, y = 491400
        3330624 + 1 = 1825^2
        491400 + 1 = 701^2
        3330624 + 491400 + 1 = 1955^2
        3330624 – 491400 + 1 = 1685^2

        x = 4443663, y = 3690240
        4443663 + 1 = 2108^2
        3690240 + 1 = 1921^2
        4443663 + 3690240 + 1 = 2852^2
        4443663 – 3690240 + 1 = 868^2

        x = 4605315, y = 2825760
        4605315 + 1 = 2146^2
        2825760 + 1 = 1681^2
        4605315 + 2825760 + 1 = 2726^2
        4605315 – 2825760 + 1 = 1334^2

        x = 5424240, y = 5340720
        5424240 + 1 = 2329^2
        5340720 + 1 = 2311^2
        5424240 + 5340720 + 1 = 3281^2
        5424240 – 5340720 + 1 = 289^2

        x = 6105840, y = 5997600
        6105840 + 1 = 2471^2
        5997600 + 1 = 2449^2
        6105840 + 5997600 + 1 = 3479^2
        6105840 – 5997600 + 1 = 329^2

        x = 7425624, y = 4182024
        7425624 + 1 = 2725^2
        4182024 + 1 = 2045^2
        7425624 + 4182024 + 1 = 3407^2
        7425624 – 4182024 + 1 = 1801^2

        x = 8185320, y = 8128200
        8185320 + 1 = 2861^2
        8128200 + 1 = 2851^2
        8185320 + 8128200 + 1 = 4039^2
        8185320 – 8128200 + 1 = 239^2

        x = 9796899, y = 1560000
        9796899 + 1 = 3130^2
        1560000 + 1 = 1249^2
        9796899 + 1560000 + 1 = 3370^2
        9796899 – 1560000 + 1 = 2870^2

        Paul.

  2. benvitalis says:

    x = a^2 - 1
    y = b^2 - 1
    x + y = c^2 - 1
    x - y = d^2 - 1
    2 \,x = c^2 + d^2 - 2
    2 \,a^2 - 2 = c^2 + d^2 - 2
    2 \,a^2 = c^2 + d^2
    c, a, d are in A.P.

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s