Puzzle| Amicable pairs (a,b) and (c,d) such that a + b = c + d

 
 
Amicable numbers
https://en.wikipedia.org/wiki/Amicable_numbers
 

\sigma(n)   is the sum of the positive divisors of   n,   including 1 and   n   itself
s(n)   is the sum of the proper divisors of   n,   which does not include   n   itself;
that is,   s(n) = \sigma(n) - n
 

The first pair is,    (220, 284)

s(220) \; = \; \sigma(220) \; - \; 220 \; = \; 504 \; - \; 220 \; = \; 284
s(284) \; = \; \sigma(284) \; - \; 284 \; = \; 504 \; - \; 284 \; = \; 220

 

Find amicable pairs   (a, b)   and   (c, d)   such that   a + b = c + d

 
 

Paul found:

(1162074914,   1232933086),     (1193945522,   1201062478)
(1273666394,   1408742566),     (1327395368,   1355013592)
(1558818261,   1596205611),     (1559592628,   1595431244)
(1741985325,   1857784275),     (1793313730,   1806455870)
(1938775850,   2110964950),     (1957374968,   2092365832)
(2141689095,   2574912249),     (2152573605,   2564027739)
(2223111345,   2383045455),     (2282361092,   2323795708)
(2419787565,   2675047635),     (2511601365,   2583233835)
(3274564293,   3623058747),     (3437861427,   3459761613)
(3396934125,   3427629075),     (3401192925,   3423370275)
(3892163756,   4033135444),     (3900906009,   4024393191)
(4023332270,   4250331730),     (4056852735,   4216811265)
(4617085725,   5410843875),     (4960585125,   5067344475)
(5301374925,   5894337075),     (5502767650,   5692944350)
(5513127795,   6585084045),     (5939023970,   6159187870)
(5574272535,   5841932265),     (5587409230,   5828795570)
(6682859001,   6790149639),     (6692989624,   6780019016)
(6885178846,   7593733154),     (6960968212,   7517943788)
(6943893957,   7397123643),     (7143425289,   7197592311)
(7317585748,   7740482732),     (7353700965,   7704367515)
(9535950765,   10390515795),     (9883587230,   10042879330)

(153015550,   168392450),     (156226856,   165181144
(165742395,   182622405),     (169335790,   179029010)
(273141836,   306014644),     (285627615,   293528865)
(275304590,   281534770),     (275631376,   281207984)
(305178874,   356714246),     (318580262,   343312858)
(311913855,   326754945),     (316293016,   322375784)
(359156770,   402020318),     (362645570,   398531518)
(393463072,   402877088),     (397287345,   399052815)
(427950350,   455921650),     (438452624,   445419376)
(540759375,   640415025),     (586188070,   594986330)
(621354896,   661063024),     (640001054,   642416866)
(965615992,   1102800008),     (989779882,   1078636118)

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Advertisements

About benvitalis

math grad - Interest: Number theory
This entry was posted in Number Puzzles and tagged . Bookmark the permalink.

3 Responses to Puzzle| Amicable pairs (a,b) and (c,d) such that a + b = c + d

  1. paul says:

    Here are a few.

    s(1162074914) = 2395008000 – 1162074914 = 1232933086
    s(1232933086) = 2395008000 – 1232933086 = 1162074914

    s(1193945522) = 2395008000 – 1193945522 = 1201062478
    s(1201062478) = 2395008000 – 1201062478 = 1162074914

    1162074914 + 1232933086 = 2395008000 &
    1193945522 + 1201062478 = 2395008000

    s(1273666394) = 2682408960 – 1273666394 = 1408742566
    s(1408742566) = 2682408960 – 1408742566 = 1273666394

    s(1327395368) = 2682408960 – 1327395368 = 1355013592
    s(1355013592) = 2682408960 – 1355013592 = 1273666394

    1273666394 + 1408742566 = 2682408960 &
    1327395368 + 1355013592 = 2682408960

    s(1558818261) = 3155023872 – 1558818261 = 1596205611
    s(1596205611) = 3155023872 – 1596205611 = 1558818261

    s(1559592628) = 3155023872 – 1559592628 = 1595431244
    s(1595431244) = 3155023872 – 1595431244 = 1558818261

    1558818261 + 1596205611 = 3155023872 &
    1559592628 + 1595431244 = 3155023872

    s(1741985325) = 3599769600 – 1741985325 = 1857784275
    s(1857784275) = 3599769600 – 1857784275 = 1741985325

    s(1793313730) = 3599769600 – 1793313730 = 1806455870
    s(1806455870) = 3599769600 – 1806455870 = 1741985325

    1741985325 + 1857784275 = 3599769600 &
    1793313730 + 1806455870 = 3599769600

    s(1938775850) = 4049740800 – 1938775850 = 2110964950
    s(2110964950) = 4049740800 – 2110964950 = 1938775850

    s(1957374968) = 4049740800 – 1957374968 = 2092365832
    s(2092365832) = 4049740800 – 2092365832 = 1938775850

    1938775850 + 2110964950 = 4049740800 &
    1957374968 + 2092365832 = 4049740800

    s(2141689095) = 4716601344 – 2141689095 = 2574912249
    s(2574912249) = 4716601344 – 2574912249 = 2141689095

    s(2152573605) = 4716601344 – 2152573605 = 2564027739
    s(2564027739) = 4716601344 – 2564027739 = 2141689095

    2141689095 + 2574912249 = 4716601344 &
    2152573605 + 2564027739 = 4716601344

    s(2223111345) = 4606156800 – 2223111345 = 2383045455
    s(2383045455) = 4606156800 – 2383045455 = 2223111345

    s(2282361092) = 4606156800 – 2282361092 = 2323795708
    s(2323795708) = 4606156800 – 2323795708 = 2223111345

    2223111345 + 2383045455 = 4606156800 &
    2282361092 + 2323795708 = 4606156800

    s(2419787565) = 5094835200 – 2419787565 = 2675047635
    s(2675047635) = 5094835200 – 2675047635 = 2419787565

    s(2511601365) = 5094835200 – 2511601365 = 2583233835
    s(2583233835) = 5094835200 – 2583233835 = 2419787565

    2419787565 + 2675047635 = 5094835200 &
    2511601365 + 2583233835 = 5094835200

    s(3274564293) = 6897623040 – 3274564293 = 3623058747
    s(3623058747) = 6897623040 – 3623058747 = 3274564293

    s(3437861427) = 6897623040 – 3437861427 = 3459761613
    s(3459761613) = 6897623040 – 3459761613 = 3274564293

    3274564293 + 3623058747 = 6897623040 &
    3437861427 + 3459761613 = 6897623040

    s(3396934125) = 6824563200 – 3396934125 = 3427629075
    s(3427629075) = 6824563200 – 3427629075 = 3396934125

    s(3401192925) = 6824563200 – 3401192925 = 3423370275
    s(3423370275) = 6824563200 – 3423370275 = 3396934125

    3396934125 + 3427629075 = 6824563200 &
    3401192925 + 3423370275 = 6824563200

    s(3892163756) = 7925299200 – 3892163756 = 4033135444
    s(4033135444) = 7925299200 – 4033135444 = 3892163756

    s(3900906009) = 7925299200 – 3900906009 = 4024393191
    s(4024393191) = 7925299200 – 4024393191 = 3892163756

    3892163756 + 4033135444 = 7925299200 &
    3900906009 + 4024393191 = 7925299200

    s(4023332270) = 8273664000 – 4023332270 = 4250331730
    s(4250331730) = 8273664000 – 4250331730 = 4023332270

    s(4056852735) = 8273664000 – 4056852735 = 4216811265
    s(4216811265) = 8273664000 – 4216811265 = 4023332270

    4023332270 + 4250331730 = 8273664000 &
    4056852735 + 4216811265 = 8273664000

    s(4617085725) = 10027929600 – 4617085725 = 5410843875
    s(5410843875) = 10027929600 – 5410843875 = 4617085725

    s(4960585125) = 10027929600 – 4960585125 = 5067344475
    s(5067344475) = 10027929600 – 5067344475 = 4617085725

    4617085725 + 5410843875 = 10027929600 &
    4960585125 + 5067344475 = 10027929600

    s(5301374925) = 11195712000 – 5301374925 = 5894337075
    s(5894337075) = 11195712000 – 5894337075 = 5301374925

    s(5502767650) = 11195712000 – 5502767650 = 5692944350
    s(5692944350) = 11195712000 – 5692944350 = 5301374925

    5301374925 + 5894337075 = 11195712000 &
    5502767650 + 5692944350 = 11195712000

    s(5513127795) = 12098211840 – 5513127795 = 6585084045
    s(6585084045) = 12098211840 – 6585084045 = 5513127795

    s(5939023970) = 12098211840 – 5939023970 = 6159187870
    s(6159187870) = 12098211840 – 6159187870 = 5513127795

    5513127795 + 6585084045 = 12098211840 &
    5939023970 + 6159187870 = 12098211840

    s(5574272535) = 11416204800 – 5574272535 = 5841932265
    s(5841932265) = 11416204800 – 5841932265 = 5574272535

    s(5587409230) = 11416204800 – 5587409230 = 5828795570
    s(5828795570) = 11416204800 – 5828795570 = 5574272535

    5574272535 + 5841932265 = 11416204800 &
    5587409230 + 5828795570 = 11416204800

    s(6682859001) = 13473008640 – 6682859001 = 6790149639
    s(6790149639) = 13473008640 – 6790149639 = 6682859001

    s(6692989624) = 13473008640 – 6692989624 = 6780019016
    s(6780019016) = 13473008640 – 6780019016 = 6682859001

    6682859001 + 6790149639 = 13473008640 &
    6692989624 + 6780019016 = 13473008640

    s(6885178846) = 14478912000 – 6885178846 = 7593733154
    s(7593733154) = 14478912000 – 7593733154 = 6885178846

    s(6960968212) = 14478912000 – 6960968212 = 7517943788
    s(7517943788) = 14478912000 – 7517943788 = 6885178846

    6885178846 + 7593733154 = 14478912000 &
    6960968212 + 7517943788 = 14478912000

    s(6943893957) = 14341017600 – 6943893957 = 7397123643
    s(7397123643) = 14341017600 – 7397123643 = 6943893957

    s(7143425289) = 14341017600 – 7143425289 = 7197592311
    s(7197592311) = 14341017600 – 7197592311 = 6943893957

    6943893957 + 7397123643 = 14341017600 &
    7143425289 + 7197592311 = 14341017600

    s(7317585748) = 15058068480 – 7317585748 = 7740482732
    s(7740482732) = 15058068480 – 7740482732 = 7317585748

    s(7353700965) = 15058068480 – 7353700965 = 7704367515
    s(7704367515) = 15058068480 – 7704367515 = 7317585748

    7317585748 + 7740482732 = 15058068480 &
    7353700965 + 7704367515 = 15058068480

    s(9535950765) = 19926466560 – 9535950765 = 10390515795
    s(10390515795) = 19926466560 – 10390515795 = 9535950765

    s(9883587230) = 19926466560 – 9883587230 = 10042879330
    s(10042879330) = 19926466560 – 10042879330 = 9535950765

    9535950765 + 10390515795 = 19926466560 &
    9883587230 + 10042879330 = 19926466560

    Paul.

  2. paul says:

    and a few more 9 digit ones

    s(153015550) = 321408000 – 153015550 = 168392450
    s(168392450) = 321408000 – 168392450 = 153015550

    s(156226856) = 321408000 – 156226856 = 165181144
    s(165181144) = 321408000 – 165181144 = 153015550

    153015550 + 168392450 = 321408000 &
    156226856 + 165181144 = 321408000

    s(165742395) = 348364800 – 165742395 = 182622405
    s(182622405) = 348364800 – 182622405 = 165742395

    s(169335790) = 348364800 – 169335790 = 179029010
    s(179029010) = 348364800 – 179029010 = 165742395

    165742395 + 182622405 = 348364800 &
    169335790 + 179029010 = 348364800

    s(273141836) = 579156480 – 273141836 = 306014644
    s(306014644) = 579156480 – 306014644 = 273141836

    s(285627615) = 579156480 – 285627615 = 293528865
    s(293528865) = 579156480 – 293528865 = 273141836

    273141836 + 306014644 = 579156480 &
    285627615 + 293528865 = 579156480

    s(275304590) = 556839360 – 275304590 = 281534770
    s(281534770) = 556839360 – 281534770 = 275304590

    s(275631376) = 556839360 – 275631376 = 281207984
    s(281207984) = 556839360 – 281207984 = 275304590

    275304590 + 281534770 = 556839360 &
    275631376 + 281207984 = 556839360

    s(305178874) = 661893120 – 305178874 = 356714246
    s(356714246) = 661893120 – 356714246 = 305178874

    s(318580262) = 661893120 – 318580262 = 343312858
    s(343312858) = 661893120 – 343312858 = 305178874

    305178874 + 356714246 = 661893120 &
    318580262 + 343312858 = 661893120

    s(311913855) = 638668800 – 311913855 = 326754945
    s(326754945) = 638668800 – 326754945 = 311913855

    s(316293016) = 638668800 – 316293016 = 322375784
    s(322375784) = 638668800 – 322375784 = 311913855

    311913855 + 326754945 = 638668800 &
    316293016 + 322375784 = 638668800

    s(359156770) = 761177088 – 359156770 = 402020318
    s(402020318) = 761177088 – 402020318 = 359156770

    s(362645570) = 761177088 – 362645570 = 398531518
    s(398531518) = 761177088 – 398531518 = 359156770

    359156770 + 402020318 = 761177088 &
    362645570 + 398531518 = 761177088

    s(393463072) = 796340160 – 393463072 = 402877088
    s(402877088) = 796340160 – 402877088 = 393463072

    s(397287345) = 796340160 – 397287345 = 399052815
    s(399052815) = 796340160 – 399052815 = 393463072

    393463072 + 402877088 = 796340160 &
    397287345 + 399052815 = 796340160

    s(427950350) = 883872000 – 427950350 = 455921650
    s(455921650) = 883872000 – 455921650 = 427950350

    s(438452624) = 883872000 – 438452624 = 445419376
    s(445419376) = 883872000 – 445419376 = 427950350

    427950350 + 455921650 = 883872000 &
    438452624 + 445419376 = 883872000

    s(540759375) = 1181174400 – 540759375 = 640415025
    s(640415025) = 1181174400 – 640415025 = 540759375

    s(586188070) = 1181174400 – 586188070 = 594986330
    s(594986330) = 1181174400 – 594986330 = 540759375

    540759375 + 640415025 = 1181174400 &
    586188070 + 594986330 = 1181174400

    s(621354896) = 1282417920 – 621354896 = 661063024
    s(661063024) = 1282417920 – 661063024 = 621354896

    s(640001054) = 1282417920 – 640001054 = 642416866
    s(642416866) = 1282417920 – 642416866 = 621354896

    621354896 + 661063024 = 1282417920 &
    640001054 + 642416866 = 1282417920

    s(965615992) = 2068416000 – 965615992 = 1102800008
    s(1102800008) = 2068416000 – 1102800008 = 965615992

    s(989779882) = 2068416000 – 989779882 = 1078636118
    s(1078636118) = 2068416000 – 1078636118 = 965615992

    965615992 + 1102800008 = 2068416000 &
    989779882 + 1078636118 = 2068416000

    P.

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s