Pythagorean triangle (a,b,c); (b-a)^2 – 2*a^2 is a square

 
 
Pythagorean triangle   (a, b, c),   b > a,   such that

(b-a)^2 = 2 \, a^2 \; + \; x^2

Fermat gave the primitive Pythagorean triangle   (156, 1517, 1525)

area = 118326,     perimeter = 3198

(1517 - 156)^2 \; = \; 2(156^2) \; + \; 1343^2

 
Find other solutions.
 

 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Advertisements

About benvitalis

math grad - Interest: Number theory
This entry was posted in Number Puzzles and tagged . Bookmark the permalink.

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s