a^2 + a*b + b^2 and c^2 + c*d + d^2 … Part 3

 

(a^2 + a \, b + b^2)^2 \; + \; (c^2 + c \, d + d^2)^2

= a^4 + 2 \, a^3 \, b + 3 \, a^2 \, b^2 + 2 \, a \, b^3 + b^4 + c^4 + 2 \, c^3 \, d + 3 \, c^2 \, d^2 + 2 \, c \, d^3 + d^4

= (a^2 + 2 \, a \, b + a \, c + a \, d + b^2 + b \, c + b \, d + c^2 + 2 \, c \, d + d^2)^2

= ((a+b)^2 \; + \; (a+b) \,(c+d) \; + \; (c+d)^2)^2

 

a^4 \; + \; b^4 \; + \; (a+b)^4
= \; 2 \, a^4 \; + \; 4 \, a^3 \, b \; + \; 6 \, a^2 \, b^2 \; + \; 4 \, a \, b^3 \; + \; 2 \, b^4
= \; 2 \, (a^2 \; + \; a \, b \; + \; b^2)^2

a^4 \; + \; b^4 \; + \; (a+b)^4 \; = \; 2 \,(a^2 \; + \; a \,b \; + \; b^2)^2

a^4 \; + \; b^4 \; + \; (a+b)^4 \; + \; c^4 \; + \; d^4 \; + \; (c+d)^4
= \; 2 \,(a^2+ a b + b^2)^2 \; + \; 2 \,(c^2 + c \, d + d^2)^2

(a+b)^4 \; + \; (c+d)^4 \; + \; (a+b+c+d)^4
= \; 2 \, (a^2 + 2 \, a \, b + a \, c + a \, d + b^2 + b \, c + b \, d + c^2 + 2 \, c \, d + d^2)^2
= \; 2 \,(a^2+ a b + b^2)^2 \; + \; 2 \,(c^2 + c \, d + d^2)^2

 
then,

(a+b)^4 \; + \; (c+d)^4 \; + \; (a+b+c+d)^4
= \; a^4 \; + \; b^4 \; + \; (a+b)^4 \; + \; c^4 \; + \; d^4 \; + \; (c+d)^4

(a+b+c+d)^4 \; = \; a^4 \; + \; b^4 \; + \; c^4 \; + \; d^4

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Advertisements

About benvitalis

math grad - Interest: Number theory
This entry was posted in Number Puzzles and tagged . Bookmark the permalink.

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s