## Primitive Pythagorean triples such that 2uv(u^2 – v^2) = x^2 + 3*y^2

To find Primitive Pythagorean triples such that the product of the legs can be expressed as   $x^2 + 3 \, y^2$

Here are the first few examples,

(3, 4, 5)   …………   $x^2 \; + \; 3 \, y^2 \; = \; 3\times 4$
(x,y) = (3,1), (0,2)

(16, 63, 65)   ……..   $x^2 \; + \; 3 \, y^2 \; = \; 16\times 63$
(x,y) = (30,6),(24,12),(6,18)

(13, 84, 85)   ……..   $x^2 \; + \; 3 \, y^2 \; = \; 13\times 84$
(x,y) = (33,1),(30,8),(27,11),(18,16),(15,17),(3,19)

(133, 156, 205)   …..   $x^2 \; + \; 3 \, y^2 \; = \; 133\times 156$
(x,y) = (144,2),(141,17),(135,29),(129,37),(120,46),(111,53),(96,62),(75,71),(69,73),(45,79),(24,82),(9,83)

Find few more examples

math grad - Interest: Number theory
This entry was posted in Number Puzzles and tagged . Bookmark the permalink.

### One Response to Primitive Pythagorean triples such that 2uv(u^2 – v^2) = x^2 + 3*y^2

1. paul says:

Here are a few more, format is {a, b, c, ab}, {{x, y}}.

{3,4,5,12} , {{3,1}}
{6,8,10,48} , {{6,2}}
{9,12,15,108} , {{9,3}}
{12,16,20,192} , {{12,4}}
{13,84,85,1092} , {{3,19},{15,17},{18,16},{27,11},{30,8},{33,1}}
{15,20,25,300} , {{15,5}}
{16,63,65,1008} , {{6,18},{24,12},{30,6}}
{18,24,30,432} , {{18,6}}
{21,28,35,588} , {{9,13},{15,11},{21,7},{24,2}}
{24,32,40,768} , {{24,8}}
{26,168,170,4368} , {{6,38},{30,34},{36,32},{54,22},{60,16},{66,2}}
{27,36,45,972} , {{27,9}}
{27,364,365,9828} , {{9,57},{45,51},{54,48},{81,33},{90,24},{99,3}}
{30,40,50,1200} , {{30,10}}
{32,126,130,4032} , {{12,36},{48,24},{60,12}}
{33,44,55,1452} , {{33,11}}
{36,48,60,1728} , {{36,12}}
{37,684,685,25308} , {{51,87},{75,81},{84,78},{105,69},{156,18},{159,3}}
{39,52,65,2028} , {{21,23},{24,22},{39,13},{45,1}}
{39,252,255,9828} , {{9,57},{45,51},{54,48},{81,33},{90,24},{99,3}}
{42,56,70,2352} , {{18,26},{30,22},{42,14},{48,4}}
{45,60,75,2700} , {{45,15}}
{48,64,80,3072} , {{48,16}}
{48,189,195,9072} , {{18,54},{72,36},{90,18}}
{49,1200,1201,58800} , {{90,130},{150,110},{210,70},{240,20}}

Paul.