638 has 8 divisors: 1, 2, 11, 22, 29, 58, 319, 638

Sum of divisors: 1080

568 has 8 divisors: 1, 2, 4, 8, 71, 142, 284, 568

Sum of divisors: 1080

Find other pair of integers x, y, y > x such that

All equations are satisfied by the numbers

and , where n = 0, 1, 2, 3, …

Also by these multiples:

x = 2840 = 5 × 568, y = 3190 = 5 × 638

x = 3976 = 7 × 568, y = 4466 = 7 × 638

x = 7384 = 13 × 568, y = 8294 = 13 × 638

x = 8520 = 15 × 568, y = 9570 = 15 × 638

x = 10792 = 19 × 568, y = 12122 = 19 × 638

x = 11928 = 21 × 568, y = 13398 = 21 × 638

x = 13064 = 23 × 568, y = 14674 = 23 × 638

…………………………………………………

…………………………………………………

(x, y) = (1824, 1836) and some of its multiples

x = 9120 = 5 × 1824, y = 9180 = 5 × 1836

(x, y) = (1704, 1914)

x = 5112 = 3 × 1704, y = 5742 = 3 × 1914

(x, y) = (4185 , 4389)

x = 8370 = 2 × 4185, y = 8778 = 2 × 4389

(x, y) = (3051, 3219)

x = 6102 = 2 × 3051, y = 6438 = 2 × 3219

(x, y) = (4960, 5236)

x = 14880 = 3 × 4960, y = 15708 = 3 × 5236

(x, y) = (6368, 6764)

x = 19104 = 3 × 6368, y = 20292 = 3 × 6764

(x, y) = (7749, 8151)

x = 15498 = 2 × 7749, y = 16302 = 2 × 8151

(x, y) = (9184, 9724)

x = 27552 = 3 × 9184, y = 29172 = 3 × 9724

Here are some more:

Format : pair, nr of divisors, sum of divisors, totient)

( 568 , 638 ) 8 1080 280

( 1704 , 1914 ) 16 4320 560

( 3051 , 3219 ) 8 4560 2016

( 1824 , 1836 ) 24 5040 576

( 2840 , 3190 ) 16 6480 1120

( 4185 , 4389 ) 16 7680 2160

( 3976 , 4466 ) 16 8640 1680

( 4960 , 5236 ) 24 12096 1920

( 6368 , 6764 ) 12 12600 3168

( 7749 , 8151 ) 16 13440 4320

( 6102 , 6438 ) 16 13680 2016

( 5112 , 5742 ) 24 14040 1680

( 7384 , 8294 ) 16 15120 3360

( 9184 , 9724 ) 24 21168 3840

( 8370 , 8778 ) 32 23040 2160

( 8520 , 9570 ) 32 25920 2240

( 9120 , 9180 ) 48 30240 2304

pipo

It works for some of their multiples.

All equations are satisfied by the numbers

where n = 0, 1, 2, 3, …