Using all digits from 1 to 9 once w/ A^{B/C} + D^{E/F} + G^{H/I}

 
 
A^{B/C} \; + \; D^{E/F} \; + \; G^{H/I}
 

To determine the lowest/highest palindromes and prime numbers that can be obtained in this fashion.

 
 
Smallest and largest palindromes :

1^{5/7} \; + \; 2^{6/3} \; + \; 9^{4/8} \; = \; 8
6^{9/3} \; + \; 7^{4/2} \; + \; 8^{5/1} \; = \; 33033

next two palindromes:

1^{5/6} \; + \; 7^{8/4} \; + \; 9^{3/2} \; = \; 77
1^{2/5} \; + \; 7^{6/3} \; + \; 9^{8/4} \; = \; 131

 
 

Smallest and largest prime numbers:

1^{5/7} \; + \; 2^{9/3} \; + \; 8^{4/6} \; = \; 13
5^{4/2} \; + \; 7^{8/1} \; + \; 9^{6/3} \; = \; 5764907

 
 

Smallest and largest integers that can be obtained:

1^{5/7} \; + \; 2^{6/3} \; + \; 9^{4/8} \; = \; 8 \; = \; 2^3
4^{7/2} \; + \; 5^{6/3} \; + \; 8^{9/1} \; = \; 134217881 \; = \; 7\times 19\times 1009157

 
 
What is the highest square number that can be obtained?   highest cube?

 

                                     **********************************************                   
 

Pipo found that the highest square number that can be obtained is:

8^{2/6} \; + \; 7^{9/3} \; + \; 4^{5/1} \; = \; 1369 \; = \; 37^2
8^{3/9} \; + \; 7^{6/2} \; + \; 4^{5/1} \; = \; 1369

and the highest cube is:

9^{7/2} \; + \; 1^{6/5} \; + \; 3^{8/4} \; = \; 2197 \; = \; 13^3

 

Can you top that?
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Advertisements

About benvitalis

math grad - Interest: Number theory
This entry was posted in Number Puzzles and tagged . Bookmark the permalink.

2 Responses to Using all digits from 1 to 9 once w/ A^{B/C} + D^{E/F} + G^{H/I}

  1. pipo says:

    According to me:
    Highest cube:
    9 ^(7 / 2) + 1 ^(6 / 5) + 3 ^(8 / 4) = 2197 (= 13^3)
    Highest square:
    8 ^(2 / 6) + 7 ^(9 /3) + 4 ^(5 / 1) = 1369 (= 37^2)
    or 8 ^(3 / 9) + 7 ^(6 / 2) + 4 ^(5 / 1) = 1369

    pipo

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s