Using all digits from 1 to 9 once w/ (A + B)*C + (D – E)/F + (G^H)*I

 
 

(A + B) \cdot C \; + \; (D - E)/F \; + \; ( \,G^H \,) \cdot I

 
 

To determine the lowest/highest palindromes and prime numbers that can be obtained in this fashion.

 

Verify the following results:

 
The lowest palindrome is 33:

(2 + 6)\times 3 \; + \; (9 - 4)/5 \; + \; (1^7)\times 8 \; = \; 33

The highest is 327723:

(6 + 7)\times 3 \; + \; (9 - 1)/2 \; + \; (4^8)\times 5 \; = \; 327723

 
 

the lowest prime number:

(3 + 7)\times 2 \; + \; (9 - 4)/5 \; + \; (1^6)\times 8 \; = \; 29

The largest prime :

(4+6)\times 5 \; + \; (3 - 1)/2 \; + \; (8^9)\times 7 \; = \; 939524147
(4+6)\times 5 \; + \; (3 - 2)/1 \; + \; (8^9)\times 7 \; = \; 939524147
(6+4)\times 5 \; + \; (3 - 1)/2 \; + \; (8^9)\times 7 \; = \; 939524147
(6+4)\times 5 \; + \; (3 - 2)/1 \; + \; (8^9)\times 7 \; = \; 939524147

 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Advertisements

About benvitalis

math grad - Interest: Number theory
This entry was posted in Number Puzzles and tagged . Bookmark the permalink.

3 Responses to Using all digits from 1 to 9 once w/ (A + B)*C + (D – E)/F + (G^H)*I

  1. paul says:

    I can verify those results

    Paul.

  2. paul says:

    and there are
    152 Palindromes and 1198 Primes
    P.

  3. paul says:

    And here are the Palindromic Primes.

    {101, 131, 151, 181, 191, 313, 353, 373, 383, 727, 757, 787, 919, 929, 12421, 78787, 98389}
    P.

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s