## Using all digits from 1 to 9 once w/ (A + B)*C + (D – E)/F + (G^H)*I

$(A + B) \cdot C \; + \; (D - E)/F \; + \; ( \,G^H \,) \cdot I$

To determine the lowest/highest palindromes and prime numbers that can be obtained in this fashion.

Verify the following results:

The lowest palindrome is 33:

$(2 + 6)\times 3 \; + \; (9 - 4)/5 \; + \; (1^7)\times 8 \; = \; 33$

The highest is 327723:

$(6 + 7)\times 3 \; + \; (9 - 1)/2 \; + \; (4^8)\times 5 \; = \; 327723$

the lowest prime number:

$(3 + 7)\times 2 \; + \; (9 - 4)/5 \; + \; (1^6)\times 8 \; = \; 29$

The largest prime :

$(4+6)\times 5 \; + \; (3 - 1)/2 \; + \; (8^9)\times 7 \; = \; 939524147$
$(4+6)\times 5 \; + \; (3 - 2)/1 \; + \; (8^9)\times 7 \; = \; 939524147$
$(6+4)\times 5 \; + \; (3 - 1)/2 \; + \; (8^9)\times 7 \; = \; 939524147$
$(6+4)\times 5 \; + \; (3 - 2)/1 \; + \; (8^9)\times 7 \; = \; 939524147$

math grad - Interest: Number theory
This entry was posted in Number Puzzles and tagged . Bookmark the permalink.

### 3 Responses to Using all digits from 1 to 9 once w/ (A + B)*C + (D – E)/F + (G^H)*I

1. paul says:

I can verify those results

Paul.

2. paul says:

and there are
152 Palindromes and 1198 Primes
P.

3. paul says:

And here are the Palindromic Primes.

{101, 131, 151, 181, 191, 313, 353, 373, 383, 727, 757, 787, 919, 929, 12421, 78787, 98389}
P.