Pandigital Binomial coefficient| When C(n, k) is pandigital

 

To find positive integers   n, \; k   such that

       \dbinom{ \;n \;}{ \;k \;}

is pandigital

 
 

\dbinom{ \;253 \;}{ \;5 \;} \; = \; 8301429675                \dbinom{ \;595 \;}{ \;4 \;} \; = \; 5169738420

\dbinom{ \; 46098 \;}{ \; 2 \;} \; = \; 1062489753            \dbinom{ \; 49797 \;}{ \; 2 \;} \; = \; 1239845706

\dbinom{ \; 50140 \;}{ \; 2 \;} \; = \; 1256984730            \dbinom{ \; 55152 \;}{ \; 2 \;} \; = \; 1520843976

\dbinom{ \; 55485 \;}{ \; 2 \;} \; = \; 1539264870            \dbinom{ \; 56521 \;}{ \; 2 \;} \; = \; 1597283460

\dbinom{ \; 58051 \;}{ \; 2 \;} \; = \; 1684930275

\dbinom{ \; 62496 \;}{ \; 2 \;} \; = \; 1952843760            \dbinom{ \; 62568 \;}{ \; 2 \;} \; = \; 1957346028

\dbinom{ \; 62901 \;}{ \; 2 \;} \; = \; 1978236450            \dbinom{ \; 66295 \;}{ \; 2 \;} \; = \; 2197480365

\dbinom{ \; 68806 \;}{ \; 2 \;} \; = \; 2367098415            \dbinom{ \; 69543 \;}{ \; 2 \;} \; = \; 2418079653

\dbinom{ \; 70767 \;}{ \; 2 \;} \; = \; 2503948761            \dbinom{ \; 72595 \;}{ \; 2 \;} \; = \; 2634980715

\dbinom{ \; 73738 \;}{ \; 2 \;} \; = \; 2718609453            \dbinom{ \; 73972 \;}{ \; 2 \;} \; = \; 2735891406

\dbinom{ \; 74169 \;}{ \; 2 \;} \; = \; 2750483196            \dbinom{ \; 74358 \;}{ \; 2 \;} \; = \; 2764518903

\dbinom{ \; 75556 \;}{ \; 2 \;} \; = \; 2854316790            \dbinom{ \; 76365 \;}{ \; 2 \;} \; = \; 2915768430

\dbinom{ \; 77806 \;}{ \; 2 \;} \; = \; 3026847915            \dbinom{ \; 78687 \;}{ \; 2 \;} \; = \; 3095782641

\dbinom{ \; 78849 \;}{ \; 2 \;} \; = \; 3108542976

\dbinom{ \; 84556 \;}{ \; 2 \;} \; = \; 3574816290            \dbinom{ \; 85960 \;}{ \; 2 \;} \; = \; 3694517820

\dbinom{ \; 86077 \;}{ \; 2 \;} \; = \; 3704581926            \dbinom{ \; 87264 \;}{ \; 2 \;} \; = \; 3807459216

\dbinom{ \; 87670 \;}{ \; 2 \;} \; = \; 3842970615            \dbinom{ \; 88407 \;}{ \; 2 \;} \; = \; 3907854621

\dbinom{ \; 89884 \;}{ \; 2 \;} \; = \; 4039521786

\dbinom{ \; 90288 \;}{ \; 2 \;} \; = \; 4075916328            \dbinom{ \; 90298 \;}{ \; 2 \;} \; = \; 4076819253

\dbinom{ \; 90981 \;}{ \; 2 \;} \; = \; 4138725690            \dbinom{ \; 91477 \;}{ \; 2 \;} \; = \; 4183975026

\dbinom{ \; 91836 \;}{ \; 2 \;} \; = \; 4216879530            \dbinom{ \; 93393 \;}{ \; 2 \;} \; = \; 4361079528

\dbinom{ \; 93627 \;}{ \; 2 \;} \; = \; 4382960751            \dbinom{ \; 95112 \;}{ \; 2 \;} \; = \; 4523098716

\dbinom{ \; 96994 \;}{ \; 2 \;} \; = \; 4703869521            \dbinom{ \; 97488 \;}{ \; 2 \;} \; = \; 4751906328

\dbinom{ \; 97965 \;}{ \; 2 \;} \; = \; 4798521630            \dbinom{ \; 98685 \;}{ \; 2 \;} \; = \; 4869315270

\dbinom{ \; 98758 \;}{ \; 2 \;} \; = \; 4876521903            \dbinom{ \; 99271 \;}{ \; 2 \;} \; = \; 4927316085

\dbinom{ \; 99325 \;}{ \; 2 \;} \; = \; 4932678150            \dbinom{ \; 99613 \;}{ \; 2 \;} \; = \; 4961325078

\dbinom{ \; 100387 \;}{ \; 2 \;} \; = \; 5038724691            \dbinom{ \; 100747 \;}{ \; 2 \;} \; = \; 5074928631

\dbinom{ \; 101224 \;}{ \; 2 \;} \; = \; 5123098476            \dbinom{ \; 101709 \;}{ \; 2 \;} \; = \; 5172309486

\dbinom{ \; 104113 \;}{ \; 2 \;} \; = \; 5419706328            \dbinom{ \; 104202 \;}{ \; 2 \;} \; = \; 5428976301

\dbinom{ \; 104779 \;}{ \; 2 \;} \; = \; 5489267031            \dbinom{ \; 107154 \;}{ \; 2 \;} \; = \; 5740936281

\dbinom{ \; 107605 \;}{ \; 2 \;} \; = \; 5789364210            \dbinom{ \; 107829 \;}{ \; 2 \;} \; = \; 5813492706

\dbinom{ \; 109405 \;}{ \; 2 \;} \; = \; 5984672310

\dbinom{ \; 110395 \;}{ \; 2 \;} \; = \; 6093472815            \dbinom{ \; 112708 \;}{ \; 2 \;} \; = \; 6351490278

\dbinom{ \; 114039 \;}{ \; 2 \;} \; = \; 6502389741            \dbinom{ \; 117081 \;}{ \; 2 \;} \; = \; 6853921740

\dbinom{ \; 117423 \;}{ \; 2 \;} \; = \; 6894021753            \dbinom{ \; 118071 \;}{ \; 2 \;} \; = \; 6970321485

\dbinom{ \; 120699 \;}{ \; 2 \;} \; = \; 7284063951            \dbinom{ \; 121815 \;}{ \; 2 \;} \; = \; 7419386205

\dbinom{ \; 122221 \;}{ \; 2 \;} \; = \; 7468925310            \dbinom{ \; 122329 \;}{ \; 2 \;} \; = \; 7482130956

\dbinom{ \; 125064 \;}{ \; 2 \;} \; = \; 7820439516            \dbinom{ \; 125236 \;}{ \; 2 \;} \; = \; 7841965230

\dbinom{ \; 126162 \;}{ \; 2 \;} \; = \; 7958362041            \dbinom{ \; 128341 \;}{ \; 2 \;} \; = \; 8235641970

\dbinom{ \; 130689 \;}{ \; 2 \;} \; = \; 8539742016            \dbinom{ \; 131382 \;}{ \; 2 \;} \; = \; 8630549271

\dbinom{ \; 133615 \;}{ \; 2 \;} \; = \; 8926417305            \dbinom{ \; 133839 \;}{ \; 2 \;} \; = \; 8956372041

\dbinom{ \; 133876 \;}{ \; 2 \;} \; = \; 8961324750            \dbinom{ \; 134442 \;}{ \; 2 \;} \; = \; 9037258461

\dbinom{ \; 135658 \;}{ \; 2 \;} \; = \; 9201478653            \dbinom{ \; 138394 \;}{ \; 2 \;} \; = \; 9576380421

\dbinom{ \; 138816 \;}{ \; 2 \;} \; = \; 9634871520            \dbinom{ \; 138960 \;}{ \; 2 \;} \; = \; 9654871320

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Advertisements

About benvitalis

math grad - Interest: Number theory
This entry was posted in Number Puzzles and tagged , . Bookmark the permalink.

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s