## Interesting pandigital number 5902183746

$5902183746$   is a pandigital numbers with the factor   $3^{14}$   and a factor that is a number with digits of consecutive sequence:

$5902183746 \; = \; 3^{14} \; \times \; 2 \; \times \; 617$

$2 \; \times \; 617 \; = \; 1234$

$5902183746 \; = \; 3^{14} \; \times \; 1234$

There are other pandigital numbers with the factor   $3^{14}$ :

$3410256897 \; = \; 3^{14} \; \times \; 23 \; \times \; 31$

$5361708249 \; = \; 3^{14} \; \times \; 19 \; \times \; 59$

$6820513794 \; = \; 3^{14} \; \times \; 2 \; \times \; 23 \; \times \; 31$

$8145396207 \; = \; 3^{14} \; \times \; 13 \; \times \; 131$

$8269753401 \; = \; 3^{14} \; \times \; 7 \; \times \; 13 \; \times \; 19$   …..   $= \; 3^{14} \; \times \; 19 \; \times \; 91$

$9145036728 \; = \; 3^{14} \; \times \; 23 \; \times \; 239$

$9537240186 \; = \; 3^{14} \; \times \; 2 \; \times \; 997$

There’s a pandigital numbers with the factor   $3^{15}$

$7246198035 \; = \; 3^{15} \; \times \; 5 \; \times \; 101$