a^n + b^n + c^n = d^n + e^n + f^n, n = 1, 2

 
 

To determine all quadruples of positive integers   (a, b, c; k)   for which

a \; + \; b \; + \; c \; = \; (k-a) \; + \; (k-b) \; + \; (k-c)
a^2 \; + \; b^2 \; + \; c^2 \; = \; (k-a)^2 \; + \; (k-b)^2 \; + \; (k-c)^2

and to find a generalization

   

Since

a \; + \; b \; + \; c \; = \; (k-a) \; + \; (k-b) \; + \; (k-c)
2 \,(a + b + c) \; = \; 3 \, k
a^2 \; + \; b^2 \; + \; c^2 \; = \; (k-a)^2 \; + \; (k-b)^2 \; + \; (k-c)^2
(a^2 + b^2 + c^2) \; - \; ((k-a)^2 + (k-b)^2 + (k-c)^2) \; = \; 0
2 \, a \, k \; + \; 2 \, b \, k \; + \; 2 \, c \, k \; - \; 3 \, k^2 \; = \; 0
2 \, k \, (a + b + c) \; - \; 3 \, k^2 \; = \; 0

So, all that is required is to select   a, b, c   so that their sum is divisible by 3.

Take   k \; = \; (2/3) \; (a + b + c)

 
For example,
 

(a,b,c)   ……..   k       (k-a)   (k-b)   (k-c)

(1,4,4)   ……….   6            (5   2   2)
(3,8,10)   …….   14           (11   6   4)
(6,11,13)   ……   20           (9   8   7)
(8,13,15)   ……   24           (16   11   9)
 

1 \; + \; 4 \; + \; 4 \; = \; 5 \; + \; 2 \; + \; 2 \; = \; 9
1^2 \; + \; 4^2 \; + \; 4^2 \; = \; 5^2 \; + \; 2^2 \; + \; 2^2 \; = \; 33

3 \; + \; 8 \; + \; 10 \; = \; 4 \; + \; 6 \; + \; 11 \; = \; 21
3^2 \; + \; 8^2 \; + \; 10^2 \; = \; 4^2 \; + \; 6^2 \; + \; 11^2 \; = \; 173

6 \; + \; 11 \; + \; 13 \; = \; 7 \; + \; 9 \; + \; 14 \; = \; 30
6^2 \; + \; 11^2 \; + \; 13^2 \; = \; 7^2 \; + \; 9^2 \; + \; 14^2 \; = \; 326

8 \; + \; 13 \; + \; 15 \; = \; 9 \; + \; 11 \; + \; 16 \; = \; 36
8^2 \; + \; 13^2 \; + \; 15^2 \; = \; 9^2 \; + \; 11^2 \; + \; 16^2 \; = \; 458

 

A generalization;

If   a_1, \; a_2, \; ..., \; a_n   are positive integers whose sum is divisible by   n   and if

k \; = \; 2(a_1 \; + \; a_2 \; + \; ... \; + \; a_n)/n,     then

a_1 \; + \; a_2 \; + \; ... \; + \; a_n \; = \; (k - a_1) \; + \; (k - a_2) \; + \; ... \; + \; (k - a_n)
a^2_1 \; + \; a^2_2 \; + \; ... \; + \; a^2_n \; = \; (k - a_1)^2 \; + \; (k - a_2)^2 \; + \; ... \; + \; (k - a_n)^2

 

 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Advertisements

About benvitalis

math grad - Interest: Number theory
This entry was posted in Number Puzzles and tagged . Bookmark the permalink.

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s