Prime numbers 127, 3697, 5227

 
 

127, \; 3697, \; 5227   are prime numbers such that the numbers

p \,(p+1),    q \,(q+1),    r \,(r+1)

form an arithmetic progression :

3697(3697 + 1) \; - \; 127(127 + 1)
= \; 5227(5227 + 1) \; - \; 3697(3697 + 1)
= \; 13655250

 
Find other such numbers

 
 
The problem may be expressed as follows: find three triangular numbers with prime indices, which form an increasing arithmetic progression.

 
 

Note that

1783,   3697,   3001   are primes congruent to 14 mod 29, that is,   29 \, n + 14,   and
2521,   5227,   4243   are primes congruent to 20 mod 41,   41 \, n + 20

n = 61,    1783 = 29\times 61 + 14,    2521 = 41\times 61 + 20

1783 (1783 + 1) - 61 (61 + 1) = 2521 (2521 + 1) - 1783 (1783 + 1) = 3177090

n = 127,    3697 = 29\times 127 + 14,    5227 = 41\times 127 + 20

3697 (3697 + 1) - 127 (127 + 1) = 5227(5227 + 1) - 3697(3697 + 1) = 13655250

n = 103,    3001 = 29\times 103 + 14,    4243 = 41\times 103 + 20

3001 (3001 + 1) - 103 (103 + 1) = 4243 (4243 + 1) - 3001 (3001 + 1) = 8998290

 

In these solutions, the numbers   n,   29 \,n+14,   and   41 \,n+20   are all primes

and, the numbers   n,   29 \,n+14, and   41 \,n+20   form an arithmetic progression:

(29 \, n+14) \,(29 \, n+15) \; - \; n \,(n+1) \; = \; 210 \, (2 \, n + 1)^2
(41 \, n+20) \,(41 \,n+21) \; - \; (29 \, n+14) \,(29 \, n+15) \; = \; 210 \, (2 \, n + 1)^2

(29 \, n+14) \,(29 \, n+15) \; - \; n \,(n+1)
= \; (41 \, n+20)(41 \, n+21) \; - \; (29 \, n+14)(29 \, n+15)

 
There are other solutions that Paul have found
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Advertisements

About benvitalis

math grad - Interest: Number theory
This entry was posted in Prime Numbers and tagged . Bookmark the permalink.

3 Responses to Prime numbers 127, 3697, 5227

  1. paul says:

    Here are a few more

    757(757 + 1) – 61(61 + 1) = 1069(1069 + 1) – 757(757 + 1) = 570024
    1783(1783 + 1) – 61(61 + 1) = 2521(2521 + 1) – 1783(1783 + 1) = 3177090
    1657(1657 + 1) – 109(109 + 1) = 2341(2341 + 1) – 1657(1657 + 1) = 2735316
    397(397 + 1) – 127(127 + 1) = 547(547 + 1) – 397(397 + 1) = 141750
    1033(1033 + 1) – 331(331 + 1) = 1423(1423 + 1) – 1033(1033 + 1) = 958230
    1447(1447 + 1) – 1249(1249 + 1) = 1621(1621 + 1) – 1447(1447 + 1) = 534006
    2377(2377 + 1) – 1249(1249 + 1) = 3121(3121 + 1) – 2377(2377 + 1) = 4091256
    2677(2677 + 1) – 1291(1291 + 1) = 3559(3559 + 1) – 2677(2677 + 1) = 5501034

    Paul.

  2. paul says:

    and a few more

    3001(3001 + 1) – 103(103 + 1) = 4243(4243 + 1) – 3001(3001 + 1) = 8998290
    3697(3697 + 1) – 127(127 + 1) = 5227(5227 + 1) – 3697(3697 + 1) = 13655250
    4813(4813 + 1) – 433(433 + 1) = 6793(6793 + 1) – 4813(4813 + 1) = 22981860
    4447(4447 + 1) – 727(727 + 1) = 6247(6247 + 1) – 4447(4447 + 1) = 19251000
    3253(3253 + 1) – 1201(1201 + 1) = 4441(4441 + 1) – 3253(3253 + 1) = 9141660
    4831(4831 + 1) – 1933(1933 + 1) = 6553(6553 + 1) – 4831(4831 + 1) = 19604970
    3373(3373 + 1) – 2203(2203 + 1) = 4231(4231 + 1) – 3373(3373 + 1) = 6525090
    4051(4051 + 1) – 2221(2221 + 1) = 5281(5281 + 1) – 4051(4051 + 1) = 11479590
    4363(4363 + 1) – 2473(2473 + 1) = 5653(5653 + 1) – 4363(4363 + 1) = 12921930
    5227(5227 + 1) – 2521(2521 + 1) = 6949(6949 + 1) – 5227(5227 + 1) = 20968794
    3607(3607 + 1) – 3301(3301 + 1) = 3889(3889 + 1) – 3607(3607 + 1) = 2114154
    5227(5227 + 1) – 4861(4861 + 1) = 5569(5569 + 1) – 5227(5227 + 1) = 3692574

    Paul.

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s