Triangular & Second pentagonal numbers

 

Suppose the positive integers   x, \; y   satisfy

2 \, x^2 \; + \; x \; = \; 3 \, y^2 \; + \; y   ………. (1)

Or

x \,(2 \,x + 1) \; = \; y \,(3 \,y + 1)

 

x \,(2 \,x + 1)   is a Triangular number  [   T_{2 \,n} = n \,(2 \,n + 1)   ]

numbers of the form   n \, (3 \, n + 1)/2   are Second pentagonal numbers.

 

Equation   (1)   gives us the Pell equation:

48 \, (x + 1/4)^2 \; - \; 72 \, (y + 1/6)^2 \; = \; 1

The first few solutions are:

(x, y)   =   (0,0),   (22,18),   (2180,1780),   (213642,174438),   (20934760,17093160),   (2051392862,1674955258)

 

Note that

x - y \; = \; 0, \; 2^2, \; 20^2, \; 198^2, \; 1960^2, \; 19402^2

2x + 2y + 1 \; = \; 1, \; 9^2, \; 89^2, \; 881^2, \; 8721^2, \; 86329^2

3x + 3y + 1 \; = \; 1, \; 11^2, \; 109^2, \; 1079^2, \; 10681^2, \; 105731^2

 

Show that for all   x, \; y   that satisfy   2 \, x^2 \; + \; x \; = \; 3 \, y^2 \; + \; y  

  x - y, \; 2x + 2y + 1, \; 3x + 3y + 1   are all perfect squares.

 
Summarizing results:

 
Second Pentagonal

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Advertisements

About benvitalis

math grad - Interest: Number theory
This entry was posted in Uncategorized and tagged , . Bookmark the permalink.

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s