## Pythagorean triple (a, b, c) with b the reversal of a

Find a Pythagorean triple   (a, b, c)   such that   b = R(a)   is the reversal of   a

Paul found:

(88209,   90288,   126225)
297 × [297, 304, 425]
Perimeter = 304722
Area = 3982107096

(125928,   829521,   839025)
297 × [424, 2793, 2825]
Perimeter = 1794474
Area = 52229960244

Pipo found:

(125928,   829521,   839025)
297 × [424, 2793, 2825]
Perimeter = 1794474
Area = 52229960244

(5513508,   8053155,   9759717)
5049 × [1092, 1595, 1933]
Perimeter = 23326380
Area = 22200567258870

(196020,   20691,   197109)
1089 × [19, 180, 181]
Perimeter = 413820
Area = 2027924910

(1978020,   208791,   1989009)
10989 × [19, 180, 181]
Perimeter = 4175820
Area = 206496386910

(19798020,   2089791,   19908009)
109989 × [19, 180, 181]
Perimeter = 41795820
Area = 20686862006910

(197998020,   20899791,   199098009)
1099989 × [180, 19, 181]
Perimeter = 417995820
Area = 2069058618206910

(1979998020,   208999791,   1990998009)
10999989 × [180, 19, 181]
Perimeter = 4179995820
Area = 206909586180206910

math grad - Interest: Number theory
This entry was posted in Number Puzzles and tagged . Bookmark the permalink.

### 4 Responses to Pythagorean triple (a, b, c) with b the reversal of a

1. paul says:

Here are a few

{88209, 90288, 126225}
{125928, 829521, 839025}

Paul.

2. pipo says:

Found one more:
5513508, 8053155, 9759717

And if we allow leading zeros there seems to be a pattern emerging:
196020, 20691, 197109
1978020, 208791, 1989009
19798020, 2089791, 19908009
197998020, 20899791, 199098009
1979998020, 208999791, 1990998009
etc

pipo