Fibonacci numbers | F(n+k) ± F(n-k)

 
 

The definition of the Fibonacci series:

F_{n+1} \; = \; F_{n-1} \; + \; F_n,     if   n \; > \; 1
F_0 \; = \; 0
F_1 \; = \; 1

 
Find
 

F_{n+2} \; + \; F_{n-2}     and     F_{n+2} \; - \; F_{n-2}

F_{n+3} \; + \; F_{n-3}     and     F_{n+3} \; - \; F_{n-3}

F_{n+4} \; + \; F_{n-4}     and     F_{n+4} \; - \; F_{n-4}

F_{n + k} \; + \; F_{n - k}     and     F_{n + k} \; - \; F_{n - k}

 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Advertisements

About benvitalis

math grad - Interest: Number theory
This entry was posted in Number Puzzles and tagged . Bookmark the permalink.

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s