Pos+ integers (a,b); a + (a+1) + (a+2) + … + (b-1) + b = a*b

 
 
Pairs   (a, \; b)   of positive integers for which

a \; + \; (a+1) \; + \; (a+2) \; + \; ... \; + \; (b-1) \; + \; b \; = \; a \, b

 
 

3 + 4 + 5 + 6 = 18 =   3\times 6

15 + 16 + 17 + … + 34 + 35 = 525 =   15\times 35

85 + 86 + 87 + … + 203 + 204 = 17340 =   85\times 204

493 + 494 + 495 + … + 1189 = 586177 =   493\times 1189

2871 + 2872 + 2873 + … + 6930 = 19896030 =   2871\times 6930

16731 + 16732 + 16733 + … + 40391 = 675781821 =   16731\times 40391

97513 + 97514 + 97515 + … + 235416 = 22956120408 =   97513\times 235416

568345 + 568346 + 568347 + … + 1372105 = 779829016225 =   568345\times 1372105

3312555 + 3312556 + 3312557 + … + 7997214
= 26491211221770

=   3312555\times 7997214

19306983 + 19306984 + 19306985 + … + 46611179
= 899921240562957

=   19306983\times 46611179

112529341 + 112529342 + 112529343 + … + 271669860
= 30570830315362260

=   112529341\times 271669860

655869061 + 655869062 + 655869063 + … + 1583407981
= 1038508305678375841

=   655869061\times 1583407981

3822685023 + 3822685024 + 3822685025 + … + 9228778026
= 35278711540581704598

=   3822685023\times 9228778026

22280241075 + 22280241076 + 22280241077 + … + 53789260175
= 1198437683944896688125

=   22280241075\times 53789260175

 

Find a recursion relation.
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Advertisements

About benvitalis

math grad - Interest: Number theory
This entry was posted in Number Puzzles and tagged . Bookmark the permalink.

2 Responses to Pos+ integers (a,b); a + (a+1) + (a+2) + … + (b-1) + b = a*b

  1. paul says:

    The first number’s in the sequences follow a recurrence of {7,-7,1}. The next number given the first 3 is as follows. given {3,15,85} we have (7 x 85) + (-7 x 15) + (1 x 3) = 493

    The last number in the sequences follow a recrrence of {6,-1}, so given the first 2 numbers we get, (6 x 35) + (-1 x 6) = 204

    There is also a recurrence for the resultant or (a x b) value, this is

    {41,-246, 246, -41, 1}, so given {18,525,17340,586177, 19896030} we get

    (1 x 18) + (-41 x 525) + (246 x 17340) + (-246 x 586177) + (41 x 19896030) = 255915594

    Using those to find the next sequence gives

    129858761425 + ….. + 313506783024 = 40711602541832856049200

    here are the recurrence again

    {7, -7, 1}..{6, -1}..{41,-246, 246, -41, 1}

    Paul

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s