## Square numbers that use each of the 10 digits exactly once

$A$   is a pandigital square   (containing the digits 0-9)

$A$                   $B^2$                        $A/9$                   $(B/3)^2$

$1026753849 \; = \; 32043^2$   ……….   $114083761 \; = \; 10681^2$
$1042385796 \; = \; 32286^2$   ……….   $115820644 \; = \; 10762^2$
$1098524736 \; = \; 33144^2$   ……….   $122058304 \; = \; 11048^2$
$1237069584 \; = \; 35172^2$   ……….   $137452176 \; = \; 11724^2$
$1248703569 \; = \; 35337^2$   ……….   $138744841 \; = \; 11779^2$
$1278563049 \; = \; 35757^2$   ……….   $142062561 \; = \; 11919^2$
$1285437609 \; = \; 35853^2$   ……….   $142826401 \; = \; 11951^2$
$1382054976 \; = \; 37176^2$   ……….   $153561664 \; = \; 12392^2$
$1436789025 \; = \; 37905^2$   ……….   $159643225 \; = \; 12635^2$
$1503267984 \; = \; 38772^2$   ……….   $167029776 \; = \; 12924^2$
$1532487609 \; = \; 39147^2$   ……….   $170276401 \; = \; 13049^2$
$1547320896 \; = \; 39336^2$   ……….   $171924544 \; = \; 13112^2$
$1643897025 \; = \; 40545^2$   ……….   $182655225 \; = \; 13515^2$
$1827049536 \; = \; 42744^2$   ……….   $203005504 \; = \; 14248^2$
$1927385604 \; = \; 43902^2$   ……….   $214153956 \; = \; 14634^2$
$1937408256 \; = \; 44016^2$   ……….   $215267584 \; = \; 14672^2$

$2076351489 \; = \; 45567^2$   ……….   $230705721 \; = \; 15189^2$
$2081549376 \; = \; 45624^2$   ……….   $231283264 \; = \; 15208^2$
$2170348569 \; = \; 46587^2$   ……….   $241149841 \; = \; 15529^2$
$2386517904 \; = \; 48852^2$   ……….   $265168656 \; = \; 16284^2$
$2431870596 \; = \; 49314^2$   ……….   $270207844 \; = \; 16438^2$
$2435718609 \; = \; 49353^2$   ……….   $270635401 \; = \; 16451^2$
$2571098436 \; = \; 50706^2$   ……….   $285677604 \; = \; 16902^2$
$2913408576 \; = \; 53976^2$   ……….   $323712064 \; = \; 17992^2$

$3015986724 \; = \; 54918^2$   ……….   $335109636 \; = \; 18306^2$
$3074258916 \; = \; 55446^2$   ……….   $341584324 \; = \; 18482^2$
$3082914576 \; = \; 55524^2$   ……….   $342546064 \; = \; 18508^2$
$3089247561 \; = \; 55581^2$   ……….   $343249729 \; = \; 18527^2$
$3094251876 \; = \; 55626^2$   ……….   $343805764 \; = \; 18542^2$
$3195867024 \; = \; 56532^2$   ……….   $355096336 \; = \; 18844^2$
$3285697041 \; = \; 57321^2$   ……….   $365077449 \; = \; 19107^2$
$3412078569 \; = \; 58413^2$   ……….   $379119841 \; = \; 19471^2$
$3416987025 \; = \; 58455^2$   ……….   $379665225 \; = \; 19485^2$
$3428570916 \; = \; 58554^2$   ……….   $380952324 \; = \; 19518^2$
$3528716409 \; = \; 59403^2$   ……….   $392079601 \; = \; 19801^2$
$3719048256 \; = \; 60984^2$   ……….   $413227584 \; = \; 20328^2$
$3791480625 \; = \; 61575^2$   ……….   $421275625 \; = \; 20525^2$
$3827401956 \; = \; 61866^2$   ……….   $425266884 \; = \; 20622^2$
$3928657041 \; = \; 62679^2$   ……….   $436517449 \; = \; 20893^2$
$3964087521 \; = \; 62961^2$   ……….   $440454169 \; = \; 20987^2$
$3975428601 \; = \; 63051^2$   ……….   $441714289 \; = \; 21017^2$
$3985270641 \; = \; 63129^2$   ……….   $442807849 \; = \; 21043^2$

Find other pandigital squares.