Palindromes P divisible by 19 & DigitSum(P) = 2,3,…,100

 
Divisible by 19

 
Find other palindromes divisible by 19.

 
Paul found:

 
   4   :     11000000011   =   7*11*11*13*19*52579
   6   :     1200021   =   3*19*37*569
   7   :     200111002   =   2*7*7*7*13*19*1181
  13   :     23332   =   2*2*19*307
  32   :     79097   =   19*23*181
  33   :     77577   =   3*19*1361
  35   :     88388   =   2*2*19*1163
  36   :     86868   =   2*2*3*3*19*127
  39   :     69996   =   2*2*3*19*307
  40   :     1698961   =   11*11*19*739
  41   :     2697962   =   2*19*70999
  42   :     3696963   =   3*19*79*821
  43   :     4695964   =   2*2*7*7*13*19*97
  44   :     5694965   =   5*19*151*397
  45   :     1899981   =   3*3*19*41*271
  46   :     2898982   =   2*19*76289
  47   :     3897983   =   19*205157
  48   :     4896984   =   2*2*2*3*19*10739
  49   :     5895985   =   5*19*53*1171
  50   :     6894986   =   2*7*7*7*19*23*23
  51   :     4989894   =   2*3*7*13*13*19*37
  52   :     5988895   =   5*11*11*19*521
  53   :     6987896   =   2*2*2*19*31*1483
  54   :     7986897   =   3*3*3*19*15569
  55   :     8985898   =   2*19*236471
  56   :     9984899   =   17*19*19*1627
  57   :     9969699   =   3*19*174907
  58   :     187989781   =   7*19*53*26669
  59   :     197979791   =   19*23*181*2503
  60   :     269989962   =   2*3*11*11*19*23*23*37
  61   :     279979972   =   2*2*19*31*151*787
  62   :     289969982   =   2*19*7630789
  63   :     189999981   =   3*3*19*239*4649
  64   :     199989991   =   19*23*457643
  65   :     578979875   =   5*5*5*19*243781
  66   :     588969885   =   3*5*7*19*37*79*101
  67   :     488999884   =   2*2*19*6434209
  68   :     498989894   =   2*13*19*73*101*137
  69   :     589898985   =   3*5*13*19*113*1409
  70   :     599888995   =   5*19*101*103*607
  71   :     787999787   =   19*41*1011553
  72   :     797989797   =   3*3*11*11*19*38567
  73   :     869999968   =   2*2*2*2*2*19*1430921
  74   :     879989978   =   2*7*19*29*114077
  75   :     889979988   =   2*2*3*17*19*229613
  76   :     899969998   =   2*19*53*283*1579
  77   :     799999997   =   19*42105263
  78   :     19799899791   =   3*7*19*239*397*523
  79   :     19899799891   =   19*21977*47657
  80   :     19999699991   =   19*19*277*200003
  81   :     18999999981   =   3*3*3*3*19*37*333667
  82   :     38998889983   =   19*2052573157
  83   :     48889998884   =   2*2*19*643289459
  84   :     48989898984   =   2*2*2*3*13*19*23*359311
  85   :     29999999992   =   2*2*2*19*73*2703677
  86   :     49998889994   =   2*19*1315760263
  87   :     59889998895   =   3*5*19*210140347
  88   :     59989898995   =   5*13*19*48574817
  89   :     79799799797   =   19*19*221052077
  90   :     79899699897   =   3*3*19*467249707
  91   :     78899999887   =   19*15859*261847
  92   :     78999899987   =   19*6337*656129
  93   :     98998789989   =   3*11*19*157892807
  94   :     1799996999971   =   19*275669*343661
  95   :     89899999898   =   2*19*5351*442121
  96   :     89999899998   =   2*3*19*1093*722299
  97   :     2799997999972   =   2*2*19*36842078947
  98   :     2999986899992   =   2*2*2*19*283*69741187
  99   :     1899999999981   =   3*3*19*21649*513239
100   :     3799998999973   =   11*11*19*6007*275161

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Advertisements

About benvitalis

math grad - Interest: Number theory
This entry was posted in Number Puzzles and tagged . Bookmark the permalink.

3 Responses to Palindromes P divisible by 19 & DigitSum(P) = 2,3,…,100

  1. Paul says:

    Here are some missing ones

    4 , 11000000011
    6 , 1200021
    7 , 200111002
    13 , 23332
    32 , 79097
    33 , 77577
    35 , 88388
    36 , 86868
    39 , 69996
    40 , 1698961
    41 , 2697962
    42 , 3696963
    43 , 4695964
    44 , 5694965
    45 , 1899981
    46 , 2898982
    47 , 3897983
    48 , 4896984
    49 , 5895985
    50 , 6894986
    51 , 4989894
    52 , 5988895
    53 , 6987896
    54 , 7986897
    55 , 8985898
    56 , 9984899
    57 , 9969699
    58 , 187989781
    59 , 197979791
    60 , 269989962
    61 , 279979972
    62 , 289969982
    63 , 189999981
    64 , 199989991
    65 , 578979875
    66 , 588969885
    67 , 488999884
    68 , 498989894
    69 , 589898985
    70 , 599888995
    71 , 787999787
    72 , 797989797
    73 , 869999968
    74 , 879989978
    75 , 889979988
    76 , 899969998
    77 , 799999997
    78 , 19799899791
    79 , 19899799891
    80 , 19999699991
    81 , 18999999981
    82 , 38998889983
    83 , 48889998884
    84 , 48989898984
    85 , 29999999992
    86 , 49998889994
    87 , 59889998895
    88 , 59989898995
    89 , 79799799797
    90 , 79899699897
    91 , 78899999887
    92 , 78999899987
    93 , 98998789989
    94 , 1799996999971
    95 , 89899999898
    96 , 89999899998
    97 , 2799997999972
    98 , 2999986899992
    99 , 1899999999981
    100 , 3799998999973

    Paul

  2. benvitalis says:

    I’ve also posted Palindromes divisible by 17

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s