a^n + b^n + c^n = x^n + y^n + z^n, n = 1,2

 
x^2 + y^2 + z^2 A1

(1)
 

1 \; + \; 11 \; + \; 24 \; = \; 3 \; + 8 \; + \; 25 \; = \; 6^2
1^2 \; + \; 11^2 \; + \; 24^2 \; = \; 3^2 \; + \; 8^2 \; + \; 25^2 \; = \; 698

3 \; + 11 \; + \; 22 \; = \; 6 \; + \; 7 \; + \; 23 \; = \; 6^2
3^2 \; + \; 11^2 \; + \; 22^2 \; = \; 6^2 \; + \; 7^2 \; + \; 23^2 \; = \; 614

1 \; + 17 \; + \; 18 \; = \; 2 \; + \; 13 \; + \; 21 \; = \; 6^2
1^2 \; + \; 17^2 \; + \; 18^2 \; = \; 2^2 \; + \; 13^2 \; + \; 21^2 \; = \; 614

N.B.   614   is the smallest number with exactly 9 representations as a sum of 3 positive squares:

614 = 1^2 + 17^2 + 18^2
614 = 2^2 + 9^2 + 23^2
614 = 2^2 + 13^2 + 21^2
614 = 3^2 + 11^2 + 22^2
614 = 6^2 + 7^2 + 23^2
614 = 6^2 + 17^2 + 17^2
614 = 7^2 + 9^2 + 22^2
614 = 10^2 + 15^2 + 17^2
614 = 11^2 + 13^2 + 18^2

 

4 \; + 14 \; + \; 31 \; = \; 7 \; + \; 10 \; + \; 32 \; = \; 7^2
4^2 \; + \; 14^2 \; + \; 31^2 \; = \; 7^2 + 10^2 + 32^2 \; = \; 1173

1 \; + 16 \; + 32 \; = \; 5 \; + \; 10 \; + \; 34 \; = \; 7^2
1^2 \; + \; 16^2 \; + \; 32^2 \; = \; 5^2 \; + 10^2 \; + \; 34^2 \; = \; 1281

2 \; + 18 \; + 29 \; = \; 8 \; + 9 \; + \; 32 \; = \; 7^2
2^2 \; + \; 18^2 \; + \; 29^2 \; = \; 8^2 \; + \; 9^2 \; + \; 32^2 \; = \; 1169

 

                                                             ——————————————
 
(2)
 

1 \; + \; 18 \; + \; 30 \; = \; 6 + 10 + 33 \; = \; 7^2
1^2 \; + \; 18^2 \; + \; 30^2 \; = \; 6^2 \; + \; 10^2 \; + \; 33^2 \; = \; 1225 \; = \; 35^2

N.B.   1225   is the smallest number with 3 representations as a sum of 4 positive cubes:
1225 = 1^3+2^3+6^3+10^3
1225 = 3^3+7^3+7^3+8^3
1225 = 4^3+6^3+6^3+9^3

 
Find more solutions.

 

Paul found:

18 \; + \; 34 \; + \; 69 \; = \; 21 \; + 30 \; + \; 70 \; = \; 11^2
18^2 \; + \; 34^2 \; + \; 69^2 \; = \; 21^2 \; + \; 30^2 \; + \; 70^2 \; = \; 79^2

25 \; + \; 68 \; + \; 76 \; = \; 40 \; + \; 41 \; + \; 88 \; = \; 13^2
25^2 \; + \; 68^2 \; + \; 76^2 \; = \; 40^2 \; + \; 41^2 \; + \; 88^2 \; = \; 105^2

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Advertisements

About benvitalis

math grad - Interest: Number theory
This entry was posted in Number Puzzles and tagged . Bookmark the permalink.

2 Responses to a^n + b^n + c^n = x^n + y^n + z^n, n = 1,2

  1. Paul says:

    A few more Pt2

    18 + 34 + 69 = 21 + 30 + 70 = 121
    18^2 + 34^2 + 69^2 = 21^2 + 30^2 + 70^2 = 6241

    25 + 68 + 76 = 40 + 41 + 88 = 169
    25^2 + 68^2 + 76^2 = 40^2 + 41^2 + 88^2 = 11025

    Paul.

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s