
Recent Posts
 A^2 = B^3 + C^3
 Set {4,b,c,d,e} such that the product of any two of them increased by 1 is a square
 smallest integer whose first n multiples all contain a 3
 Set {3,b,c,d,e} such that the product of any two of them increased by 1 is a square
 Set {2,b,c,d,e} such that the product of any two of them increased by 1 is a square
Recent Comments
Archives
 February 2017
 January 2017
 December 2016
 November 2016
 October 2016
 September 2016
 August 2016
 July 2016
 June 2016
 May 2016
 April 2016
 March 2016
 February 2016
 January 2016
 December 2015
 November 2015
 October 2015
 September 2015
 August 2015
 July 2015
 June 2015
 May 2015
 April 2015
 March 2015
 February 2015
 January 2015
 December 2014
 November 2014
 October 2014
 September 2014
 August 2014
 July 2014
 June 2014
 May 2014
 April 2014
 March 2014
 February 2014
 January 2014
 December 2013
 November 2013
 October 2013
 September 2013
 August 2013
 July 2013
 June 2013
 May 2013
 April 2013
 March 2013
 February 2013
 January 2013
 December 2012
 November 2012
 October 2012
 September 2012
 August 2012
 July 2012
 June 2012
 May 2012
 April 2012
 March 2012
 February 2012
 January 2012
Categories
Meta
Monthly Archives: February 2013
From Prime —> Square —> Prime
2  3 = 23 is a prime number  \/ (2^2)  (3^2) = 49 is a perfect square (= 7^2)  \/ (4^2)  … Continue reading
0.2000 2001 2002 2003 2004 …. 2013 ….
19998001 = 17 * 1176353 99980001 = 9999^2 19998001 / 99980001 = 0.200020012002200320042005200620072008200920102011201220132014201520162017 201820192020202120222023202420252026202720282029203020312032203320342035 203620372038203920402041204220432044204520462047204820492050205120522053 205420552056205720582059206020612062206320642065206620672068206920702071 207220732074207520762077207820792080208120822083208420852086208720882089 209020912092209320942095209620972098209921002101210221032104210521062107 210821092110211121122113211421152116211721182119212021212122212321242125 212621272128212921302131213221332134213521362137213821392140214121422143 214421452146214721482149215021512152215321542155215621572158215921602161 216221632164216521662167216821692170217121722173217421752176217721782179 218021812182218321842185218621872188218921902191219221932194219521962197 219821992200220122022203220422052206220722082209221022112212221322142215 221622172218221922202221222222232224222522262227222822292230223122322233 223422352236223722382239224022412242224322442245224622472248224922502251 225222532254225522562257225822592260226122622263226422652266226722682269 227022712272227322742275227622772278227922802281228222832284228522862287 228822892290229122922293229422952296229722982299230023012302230323042305 230623072308230923102311231223132314231523162317231823192320232123222323 232423252326232723282329233023312332233323342335233623372338233923402341 234223432344234523462347234823492350235123522353235423552356235723582359 … Continue reading
Num3er 0.2013……..
x/y = 0.2013…….. 46304562 = 2 * 3 * 7717427 229933099 = 11 * 20903009 46304562 / 229933099 = 0.201382759599999998260363550356010293237512534026256045894462… 1 / 4967 (period 4966) = 0.000201328769881216025770082544795651298570565733843366217032… … Continue reading
0.2013 2012 2011 2010 …..
The consecutive years starting with 2013 in descending order: 20127986 = 2 * 2801 * 3593 99980001 = 9999^2 20127986 / 99980001 = 0.201320122011201020092008200720062005200420032002200120001999199819971996 1995199419931992199119901989198819871986198519841983198219811980197919781977 1976197519741973197219711970196919681967196619651964196319621961196019591958 1957195619551954195319521951195019491948194719461945194419431942194119401939 1938193719361935193419331932193119301929192819271926192519241923192219211920 1919191819171916191519141913191219111910190919081907190619051904190319021901 1900189918981897189618951894189318921891189018891888188718861885188418831882 1881188018791878187718761875187418731872187118701869186818671866186518641863 … Continue reading
Prime Num3ers (a+b+c) and (a*b*c) end with digit 7
Goal: To find three different prime numbers A, B, C so that their sum (A + B + C) and their product A*B*C end with the digit 7 For example, 3 … Continue reading
Square Num3ers aba… ± 1 is a square
Let’s look at numbers of the form aba ± 1, ababa ± 1, ababab ± 1, aaabbbccc ± 1 and other combinations (a ≠ b) For example, aba + 1 is a square: … Continue reading
Puzzle 8digit square number
Find an 8digit square number which can be transformed into another square when the second digit from the left is increased by 1.
Puzzle square numbers – DigitSum
Here are 7 consecutive squares for each of which its decimal digits sum to a square: 9^2 = 81 … Continue reading
Puzzle 12digit square num3er
Find a 12digit square number which is the concatenation of a 4digit square number and an 8digit square number. 12digit square number = B  C B is either a 4digit square or an 8digit square. … Continue reading
9digit num3er aaabbbccc
Find a 9digit number of the form aaabbbccc so that aaabbbccc + 1 is a square number that is, aaabbbccc + 1 = x^2 @InfinitelyManic found: … Continue reading