Fractions Using All Digits 1 to 9 only once

Goal:   To express integers as a fraction or a mixed fraction using ALL digits 1 to 9 and whenever possible the digits 0 to 9 only once.

I have posted some of the following results a long time ago. They are buried some where in older posts.
 

13458/6729   =   2                    13584/6792   =   2
13854/6927   =   2                    14538/7269   =   2
14586/7293   =   2                    14658/7329   =   2
15384/7692   =   2                    15846/7923   =   2
15864/7932   =   2                    18534/9267   =   2
18546/9273   =   2                    18654/9327   =   2
 
17469/5823   =   3                    17496/5832   =   3
 
15768/3942   =   4                    17568/4392   =   4
23184/5796   =   4                    31824/7956   =   4
 
13485/2697   =   5                    13845/2769   =   5
14685/2937   =   5                    14835/2967   =   5
14865/2973   =   5                    16485/3297   =   5
18645/3729   =   5                    31485/6297   =   5
38145/7629   =   5                    46185/9237   =   5
48135/9627   =   5                    48615/9723   =   5
 
17658/2943   =   6
27918/4653   =   6
34182/5697   =   6
 
16758/2394   =   7                    18459/2637   =   7
31689/4527   =   7                    36918/5274   =   7
37926/5418   =   7                    41832/5976   =   7
53298/7614   =   7
 
The two equalities        65821/9403   =   7   =   28651/4093
use all 10 digits 0-9 once in each equality.
 
76328/9541   =   8                    76248/9531   =   8
76184/9523   =   8                    75368/9421   =   8
75328/9416   =   8                    74816/9352   =   8
74568/9321   =   8                    74528/9316   =   8
73456/9182   =   8                    73248/9156   =   8
71632/8954   =   8                    71624/8953   =   8
71536/8942   =   8                    71456/8932   =   8
67512/8439   =   8                    67352/8419   =   8
67152/8394   =   8                    65432/8179   =   8
65392/8174   =   8                    63528/7941   =   8
63152/7894   =   8                    59368/7421   =   8
59328/7416   =   8                    58912/7364   =   8
58496/7312   =   8                    56984/7123   =   8
54712/6839   =   8                    54328/6791   =   8
54312/6789   =   8                    53928/6741   =   8
51832/6479   =   8                    47368/5921   =   8
47328/5916   =   8                    47136/5892   =   8
46712/5839   =   8                    46328/5791   =   8
46312/5789   =   8                    42968/5371   =   8
41896/5237   =   8                    38152/4769   =   8
37528/4691   =   8                    37512/4689   =   8
36728/4591   =   8                    36712/4589   =   8
25496/3187   =   8                    73264/9158   =   8
 
57429/6381   =   9
58239/6471   =   9
75249/8361   =   9
 

each ratio use each of 10 digits 0-9 once:

97524/10836   =   9
95823/10647   =   9
95742/10638   =   9
 

45792/3816   =   12                    73548/6129   =   12
89532/7461   =   12                    91584/7632   =   12
 

9 5472/1368   =   13
9 6435/1287   =   14
3 8952/(746/1)   =   15
12 3576/894   =   16
9 5742/(638/1)   =   18
6 13258/947   =   20
18 3645/729   =   23
15 9432/786   =   27
24 9756/813   =   36
27 5148/396   =   40
49 5761/823   =   56
18 36450/729   =   68
65 1892/473   =   69
59 3614/278   =   72
81 3645/729   =   86
75 3648/192   =   94

3 69258/714   =   100
96 2148/537   =   100
96 1752/438   =   100
96 1428/357   =   100
94 1578/263   =   100
91 7524/836   =   100
91 5823/647   =   100
91 5742/638   =   100
82 3546/197   =   100
81 7524/396   =   100
81 5643/297   =   100

94 5761/823   =   101
108 3645/729   =   113
81 36450/729   =   131
180 3645/729   =   185
409 5761/823   =   416
468 5103/729   =   475
486 5103/729   =   493
490 5761/823   =   497
579 4160/832   =   584
597 4160/832   =   602
648 5103/729   =   655
684 5103/729   =   691
759 4160/832   =   764
795 4160/832   =   800
846 5103/729   =   853
864 5103/729   =   871
904 5761/823   =   911
940 5761/823   =   947

 
 
Find more examples.

 
 
David a/k/a @InfinitelyManic found:

26843 / 1579 = 17
28543 / 1679 = 17
29546 / 1738 = 17
36958 / 2174 = 17
45713 / 2689 = 17
45781 / 2693 = 17
54689 / 3217 = 17
59126 / 3478 = 17
64957 / 3821 = 17
65297 / 3841 = 17
67184 / 3952 = 17
67218 / 3954 = 17
76823 / 4519 = 17
76891 / 4523 = 17
78132 / 4596 = 17
78523 / 4619 = 17
78591 / 4623 = 17
81532 / 4796 = 17
83572 / 4916 = 17
83657 / 4921 = 17
89437 / 5261 = 17
89471 / 5263 = 17
89641 / 5273 = 17
91426 / 5378 = 17
92837 / 5461 = 17
92871 / 5463 = 17
93126 / 5478 = 17
 

Advertisements

About benvitalis

math grad - Interest: Number theory
This entry was posted in Number Puzzles and tagged , . Bookmark the permalink.

4 Responses to Fractions Using All Digits 1 to 9 only once

  1. David a/k/a @InfinitelyManic says:

    The mixed fractions are really interesting.

    #Python3 Command Line Interface

    >>> from itertools import permutations
    >>> list5 = list(permutations(‘123456789’,5))
    >>> list4 = list(permutations(‘123456789’,4))
    >>> n = [int(“”.join(n)) for n in list5]
    >>> d = [int(“”.join(n)) for n in list4]
    >>> from fractions import Fraction
    >>> [ print(n[i],”/”,d[j],”=”,Fraction(n[i],d[j])) for i in range(0,len(n)) for j in range(0,len(d)) if set(str(n[i])).isdisjoint(set(str(d[j]))) is True and Fraction(n[i],d[j]).denominator == 1 and Fraction(n[i],d[j]).denominator == 17]

    #### some results for 5 digit numerator & 4 digit denominator; where fraction reduces to 17 ######

    26843 / 1579 = 17
    28543 / 1679 = 17
    29546 / 1738 = 17
    36958 / 2174 = 17
    45713 / 2689 = 17
    45781 / 2693 = 17
    54689 / 3217 = 17
    59126 / 3478 = 17
    64957 / 3821 = 17
    65297 / 3841 = 17
    67184 / 3952 = 17
    67218 / 3954 = 17
    76823 / 4519 = 17
    76891 / 4523 = 17
    78132 / 4596 = 17
    78523 / 4619 = 17
    78591 / 4623 = 17
    81532 / 4796 = 17
    83572 / 4916 = 17
    83657 / 4921 = 17
    89437 / 5261 = 17
    89471 / 5263 = 17
    89641 / 5273 = 17
    91426 / 5378 = 17
    92837 / 5461 = 17
    92871 / 5463 = 17
    93126 / 5478 = 17

  2. David a/k/a @InfinitelyManic says:

    ..that last bit of code should say numerator == 17

  3. David a/k/a @InfinitelyManic says:

    ### 1-9 where n/d <= 100 followed by some 0-9 where n/d < =100 ….script is still running….
    13458 / 6729 = 2
    13584 / 6792 = 2
    13854 / 6927 = 2
    14538 / 7269 = 2
    14586 / 7293 = 2
    14658 / 7329 = 2
    15384 / 7692 = 2
    15846 / 7923 = 2
    15864 / 7932 = 2
    18534 / 9267 = 2
    18546 / 9273 = 2
    18654 / 9327 = 2
    17469 / 5823 = 3
    17496 / 5832 = 3
    15768 / 3942 = 4
    17568 / 4392 = 4
    23184 / 5796 = 4
    31824 / 7956 = 4
    13485 / 2697 = 5
    13845 / 2769 = 5
    14685 / 2937 = 5
    14835 / 2967 = 5
    14865 / 2973 = 5
    16485 / 3297 = 5
    18645 / 3729 = 5
    31485 / 6297 = 5
    38145 / 7629 = 5
    46185 / 9237 = 5
    48135 / 9627 = 5
    48615 / 9723 = 5
    17658 / 2943 = 6
    27918 / 4653 = 6
    34182 / 5697 = 6
    16758 / 2394 = 7
    18459 / 2637 = 7
    31689 / 4527 = 7
    36918 / 5274 = 7
    37926 / 5418 = 7
    41832 / 5976 = 7
    53298 / 7614 = 7
    25496 / 3187 = 8
    36712 / 4589 = 8
    36728 / 4591 = 8
    37512 / 4689 = 8
    37528 / 4691 = 8
    38152 / 4769 = 8
    41896 / 5237 = 8
    42968 / 5371 = 8
    46312 / 5789 = 8
    46328 / 5791 = 8
    46712 / 5839 = 8
    47136 / 5892 = 8
    47328 / 5916 = 8
    47368 / 5921 = 8
    51832 / 6479 = 8
    53928 / 6741 = 8
    54312 / 6789 = 8
    54328 / 6791 = 8
    54712 / 6839 = 8
    56984 / 7123 = 8
    58496 / 7312 = 8
    58912 / 7364 = 8
    59328 / 7416 = 8
    59368 / 7421 = 8
    63152 / 7894 = 8
    63528 / 7941 = 8
    65392 / 8174 = 8
    65432 / 8179 = 8
    67152 / 8394 = 8
    67352 / 8419 = 8
    67512 / 8439 = 8
    71456 / 8932 = 8
    71536 / 8942 = 8
    71624 / 8953 = 8
    71632 / 8954 = 8
    73248 / 9156 = 8
    73264 / 9158 = 8
    73456 / 9182 = 8
    74528 / 9316 = 8
    74568 / 9321 = 8
    74816 / 9352 = 8
    75328 / 9416 = 8
    75368 / 9421 = 8
    76184 / 9523 = 8
    76248 / 9531 = 8
    76328 / 9541 = 8
    57429 / 6381 = 9
    58239 / 6471 = 9
    75249 / 8361 = 9
    45792 / 3816 = 12
    73548 / 6129 = 12
    89532 / 7461 = 12
    91584 / 7632 = 12
    67392 / 5184 = 13
    81549 / 6273 = 13
    94653 / 7281 = 13
    25746 / 1839 = 14
    27384 / 1956 = 14
    41538 / 2967 = 14
    46158 / 3297 = 14
    51492 / 3678 = 14
    54768 / 3912 = 14
    61572 / 4398 = 14
    65982 / 4713 = 14
    27945 / 1863 = 15
    92745 / 6183 = 15
    45936 / 2871 = 16
    73296 / 4581 = 16
    98352 / 6147 = 16
    26843 / 1579 = 17
    28543 / 1679 = 17
    29546 / 1738 = 17
    36958 / 2174 = 17
    45713 / 2689 = 17
    45781 / 2693 = 17
    54689 / 3217 = 17
    59126 / 3478 = 17
    64957 / 3821 = 17
    65297 / 3841 = 17
    67184 / 3952 = 17
    67218 / 3954 = 17
    76823 / 4519 = 17
    76891 / 4523 = 17
    78132 / 4596 = 17
    78523 / 4619 = 17
    78591 / 4623 = 17
    81532 / 4796 = 17
    83572 / 4916 = 17
    83657 / 4921 = 17
    89437 / 5261 = 17
    89471 / 5263 = 17
    89641 / 5273 = 17
    91426 / 5378 = 17
    92837 / 5461 = 17
    92871 / 5463 = 17
    93126 / 5478 = 17
    28674 / 1593 = 18
    51984 / 2736 = 19
    81567 / 4293 = 19
    51678 / 2349 = 22
    36294 / 1578 = 23
    81627 / 3549 = 23
    81972 / 3564 = 23
    39528 / 1647 = 24
    46872 / 1953 = 24
    42978 / 1653 = 26
    56498 / 2173 = 26
    61854 / 2379 = 26
    67314 / 2589 = 26
    67418 / 2593 = 26
    76518 / 2943 = 26
    82654 / 3179 = 26
    89726 / 3451 = 26
    92846 / 3571 = 26
    39852 / 1476 = 27
    49572 / 1836 = 27
    69741 / 2583 = 27
    96714 / 3582 = 27
    75348 / 2691 = 28
    37584 / 1296 = 29
    73689 / 2541 = 29
    75168 / 2349 = 32
    48265 / 1379 = 35
    63945 / 1827 = 35
    64295 / 1837 = 35
    74865 / 2139 = 35
    93485 / 2671 = 35
    65934 / 1782 = 37
    65892 / 1734 = 38
    74328 / 1956 = 38
    93654 / 2178 = 43
    58476 / 1329 = 44
    59268 / 1347 = 44
    67892 / 1543 = 44
    69432 / 1578 = 44
    95348 / 2167 = 44
    58374 / 1269 = 46
    95472 / 1836 = 52
    65879 / 1243 = 53
    75896 / 1432 = 53
    84376 / 1592 = 53
    92538 / 1746 = 53
    73986 / 1254 = 59
    79546 / 1283 = 62
    94736 / 1528 = 62
    83754 / 1269 = 66
    98736 / 1452 = 68

    ######### 0-9
    90762 / 45381 = 2
    90372 / 45186 = 2
    90276 / 45138 = 2
    98760 / 12345 = 8
    98532 / 14076 = 7
    98456 / 12307 = 8
    97062 / 48531 = 2
    97032 / 48516 = 2
    97026 / 48513 = 2
    97524 / 10836 = 9
    97302 / 48651 = 2
    97230 / 48615 = 2
    96702 / 48351 = 2
    96584 / 12073 = 8
    96270 / 48135 = 2
    96174 / 32058 = 3
    95823 / 10647 = 9
    95742 / 10638 = 9
    94068 / 23517 = 4
    94860 / 23715 = 4
    93702 / 46851 = 2
    93270 / 18654 = 5
    92730 / 18546 = 5
    92670 / 18534 = 5
    92370 / 46185 = 2
    91746 / 30582 = 3
    87632 / 10954 = 8
    87624 / 10953 = 8
    87536 / 10942 = 8
    87456 / 10932 = 8

  4. David a/k/a @InfinitelyManic says:

    Some more 0-9 There could be duplicates
    58614 / 29307 = 2
    59126 / 3478 = 17
    59268 / 1347 = 44
    60948 / 15237 = 4
    61458 / 30729 = 2
    61572 / 4398 = 14
    61584 / 30792 = 2
    61749 / 20583 = 3
    61854 / 2379 = 26
    61854 / 30927 = 2
    62970 / 31485 = 2
    63945 / 1827 = 35
    64158 / 32079 = 2
    64295 / 1837 = 35
    64957 / 3821 = 17
    65297 / 3841 = 17
    65418 / 32709 = 2
    65814 / 32907 = 2
    65879 / 1243 = 53
    65892 / 1734 = 38
    65934 / 1782 = 37
    65982 / 4713 = 14
    67184 / 3952 = 17
    67218 / 3954 = 17
    67290 / 13458 = 5
    67314 / 2589 = 26
    67392 / 5184 = 13
    67418 / 2593 = 26
    67892 / 1543 = 44
    67920 / 13584 = 5
    68940 / 17235 = 4
    69174 / 23058 = 3
    69270 / 13854 = 5
    69408 / 17352 = 4
    69432 / 1578 = 44
    69702 / 34851 = 2
    69741 / 2583 = 27
    70296 / 35148 = 2
    70962 / 35481 = 2
    72690 / 14538 = 5
    72930 / 14586 = 5
    73290 / 14658 = 5
    73296 / 4581 = 16
    73548 / 6129 = 12
    73689 / 2541 = 29
    73986 / 1254 = 59
    74328 / 1956 = 38
    74865 / 2139 = 35
    75168 / 2349 = 32
    75348 / 2691 = 28
    75896 / 1432 = 53
    76290 / 38145 = 2
    76518 / 2943 = 26
    76823 / 4519 = 17
    76891 / 4523 = 17
    76902 / 38451 = 2
    76920 / 15384 = 5
    78132 / 4596 = 17
    78523 / 4619 = 17
    78591 / 4623 = 17
    79230 / 15846 = 5
    79320 / 15864 = 5
    79546 / 1283 = 62
    81532 / 4796 = 17
    81549 / 6273 = 13
    81567 / 4293 = 19
    81576 / 20394 = 4
    81627 / 3549 = 23
    81756 / 20439 = 4
    81972 / 3564 = 23
    82654 / 3179 = 26
    83572 / 4916 = 17
    83657 / 4921 = 17
    83672 / 10459 = 8
    83752 / 10469 = 8
    83754 / 1269 = 66
    84296 / 10537 = 8
    84376 / 1592 = 53
    84632 / 10579 = 8
    84736 / 10592 = 8
    85392 / 10674 = 8
    85432 / 10679 = 8
    85936 / 10742 = 8
    86352 / 10794 = 8
    86940 / 21735 = 4

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s