The equation

**1/a^2 + 1/b^2 + 1/c^2 + … + 1/x^2 = 1/2**

where all variables a, b, c, …, x must be different, positive integers, and there must be a finite number of terms.

**9 terms:**

**1/2 = **

1/2^2 + 1/3^2 + 1/4^2 + 1/5^2 + 1/7^2 + 1/8^2 + 1/56^2 + 1/168^2 + 1/840^2

**10 terms:**

**1/2 =**

1/2^2 + 1/3^2 + 1/4^2 + 1/5^2 + 1/6^2 + 1/12^2 + 1/30^2 + 1/60^2 + 1/75^2 + 1/100^2

**11 terms:**

**1/2 =**

1/2^2 + 1/3^2 + 1/4^2 + 1/5^2 + 1/6^2 + 1/12^2 + 1/30^2 + 1/50^2 + 1/100^2 + 1/150^2 + 1/300^2

**Can you find more solutions?**

### Like this:

Like Loading...

*Related*

## About benvitalis

math grad - Interest: Number theory

Pingback: 1/a^2 + 1/b^2 + … + 1/x^2 = 1/2 | Benvitalis's Blog