Integer with 12 and 16 representations as a sum of 2 squares

160225   has 12 representations as a sum of 2 squares:
It is also the smallest number that can be written as sum of two perfect squares in 12 ways.

160225 =
=   15^2   +   400^2
=   32^2   +   399^2
=   76^2   +   393^2
=   81^2   +   392^2
=   113^2   +   384^2
=   140^2   +   375^2
=   175^2   +   360^2
=   183^2   +   356^2
=   216^2   +   337^2
=   228^2   +   329^2
=   252^2   +   311^2
=   265^2   +   300^2
 
 
801125   has 16 representations as a sum of 2 squares:

801125 =
=   10^2   +   895^2
=   95^2   +   890^2
=   127^2   +   886^2
=   158^2   +   881^2
=   193^2   +   874^2
=   230^2   +   865^2
=   241^2   +   862^2
=   335^2   +   830^2
=   370^2   +   815^2
=   430^2   +   785^2
=   458^2   +   769^2
=   463^2   +   766^2
=   529^2   +   722^2
=   545^2   +   710^2
=   554^2   +   703^2
=   610^2   +   655^2
 
 
Find other examples.
 
 
 

Advertisements

About benvitalis

math grad - Interest: Number theory
This entry was posted in Math Beauty, Number Puzzles and tagged , , . Bookmark the permalink.

1 Response to Integer with 12 and 16 representations as a sum of 2 squares

  1. Pingback: Integer with 12 and 16 representations as a sum of 2 squares | Benvitalis's Blog

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out /  Change )

Google photo

You are commenting using your Google account. Log Out /  Change )

Twitter picture

You are commenting using your Twitter account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )

Connecting to %s