# Monthly Archives: August 2012

## Digit Switch – 6-digit Num3er ABCDEF * 6 = DEFABC

Let   ABCDEF   be a 6-digit number, and     A B C D E F                 * 6     ———————-     D E F A B C   Let   ABC = x   and   DEF = y … Continue reading

## Num3er 34,969

Count von Count loved all numbers, but 34,969 in particular. Why? http://www.bbc.co.uk/news/magazine-19409960   34969   =   187^2   is a perfect square. 187^2   =   11^2 * 17^2 187   =   11 * 17   (the product … Continue reading

## Num3ers expressed as the sum of 4-th and 5-th powers of their digits

1634   =   1^4 + 6^4 + 3^4 + 4^4 8208   =   8^4 + 2^4 + 0^4 + 8^4 9474   =   9^4 + 4^4 + 7^4 + 4^4     4150   =   4^5 … Continue reading

## (x, y); x + y = a^2 and x*y = b^2

Goal:   To find   (x, y)   such that … the sum is a square:           x + y = a^2 the product is a square:      x * y = b^2 For example, (1)   x = 2 … Continue reading

Posted in Math Beauty | Tagged , , | 5 Comments

## Math Food – Shapes and Patterns

Fruits of a Kousa Dogwood tree     MAA Found Math Gallery http://maa.org/FoundMath/11week38.html     Pi Pie     Möbius Strip Bagel     Sierpinski Carpet Cookies     Fractal Snowflake Cupcakes     Menger Sponge Gingerbread House     … Continue reading

## Puzzles: Use operators +, -, *, / write an expression equal to a num3er

(1)   Use the four digits   3, 3, 7, 7   and   +, -, *, / to make   24     (2)   Use   +, -, *, /   and the digits   1, 2, 3, … Continue reading

Posted in Number Puzzles | Tagged | 1 Comment

## Rob Bryanton’s Imagining the Tenth Dimension

Imagining the Tenth Dimension (annotated)     “Rob Bryanton’s Imagining the Tenth Dimension is one of the most brilliantly-conceived and mind-stretching books that I’ve ever encountered. Bryanton presents a uniquely compelling model of our 10-dimensional universe, that allows one to … Continue reading

## A||B = AB; AB * (A+B) = A^3 + B^3

I set out to solve the two equations     (10*X + Y)(X + Y) = X^3 + Y^3     (100*X + Y)(X + Y) = X^3 + Y^3 and I got the following solutions: Trivial solutions: a = 0,   … Continue reading